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Abstract—Control of threshold voltage (VT) by 

ground-plane (GP) technique for planar tunnel field-

effect transistor (TFET) is studied for the first time 

using TCAD simulation method. Although GP 

technique appears to be similarly useful for the TFET 

as for the metal-oxide-semiconductor field-effect 

transistor (MOSFET), some unique behaviors such as 

the small controllability under weak ground doping 

and dependence on the dopant polarity are also 

observed. For VT-modulation larger than 100 mV, 

heavy ground doping over 1×10
20
 cm

-3
 or back 

biasing scheme is preferred in case of TFETs. Polarity 

dependence is explained with a mechanism similar to 

the punch-through of MOSFETs. In spite of some 

minor differences, this result shows that both 

MOSFETs and TFETs can share common VT-control 

scheme when these devices are co-integrated.   

 

Index Terms—Threshold voltage, Tunnel field-effect 

Transistor (TFET), ground-plane, ultrathin body and 

bottom oxide (UTBB), TCAD simulation   

I. INTRODUCTION 

Recently various tunneling-injection floating-body 

devices, so called tunnel field-effect transistors (TFETs), 

have been massively studied as a single device due to the 

extraordinary subthreshold characteristics and capability 

of low-voltage operation [1-4]. However, there is a lack 

of studies on practical VT-control schemes compatible 

with existing low power circuit design techniques [5, 6]. 

Although a device design with the VT-control doping 

region was recently proposed from this perspective, 

needs of asymmetric angled doping process and 

restriction in the direction of gate lines can limit the 

practical usefulness [7]. 

A similar problem in a fully-depleted silicon-on-

insulator metal-oxide-semiconductor field-effect transistor 

(FDSOI-MOSFET) is studied with the ground-plane 

(GP) or back-gate technique proposed by Xiong et al. 

(Fig. 1) [8]. Recently this scheme was successfully 

demonstrated to implement multi-VT options for metal-

gate/high- MOSFETs using ultrathin body and bottom 

oxide (UTBB) SOI substrate [9].  

In this work, we verify the extendibility of GP 
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Fig. 1. VT-control schemes of (a) bulk device, (b) ultra-thin-

body silicon-on-insulator (UTB-SOI) device, (c) ultra-thin-

body-and-box silicon-on-insulator (UTBB-SOI) device. 
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technique to TFETs with the commercial device 

simulator SILVACO ATLASTM [10]. For the accurate 

calculation, the built-in non-local tunneling model and 

the Fermi-Dirac statistics are used with 0.15-nm interval 

of quantum mesh defined near the tunneling region.  

II. MODEL DEVICE AND DEFINITION OF 

PARAMETERS 

Fig. 2 and Table 1 summarize the model structure used 

in this study. Based on the recent studies on UTBB-SOI 

MOSFETs, the baseline device is defined with 6 nm of 

SOI and 10 nm of BOX with the raised source/drain [9, 

11]. To maximize the current drivability, the source 

junction is designed within a narrow bandgap material 

[12]. The drain-side sidewall is formed thicker than the 

other to suppress the unwanted drain-side tunneling 

current at off-state. 

Fig. 3 shows the typical transfer characteristics of the 

model device with VDS = 1 V. Since the definitions of VT 

for the MOSFET based on the strong inversion of the 

channel are not applicable to TFET, the simple constant 

current method with a threshold current IT of 0.1 A/ mµ  

is used to define VT. Change in the energy band diagram 

at the defined VT is shown in Fig. 4. As for subthreshold 

swing (SS), the slope of ID-VGS curve in Fig. 3 

continuously changes below VT unlike those of 

MOSFETs. This is because the subthreshold current of a 

TFET is governed by the band-to-band tunneling 

mechanism, not by the statistical diffusion. Therefore, the 

SS is defined as the average swing between VT and VT - 

0.3×VDD. Calculating the average SS within a fixed 

interval makes it possible to compare the steepnesses of 

different subthreshold curves regardless of the VTs. The 

value of 0.3×VDD is used because the VTs of MOSFETs in 

logic CMOS technology have been scaled to be 

 

Body Electrode

Source Drain

Gatep-type Ge

Substrate (Ground Plane)

BOX (Oxide)

n-type Si

n-type SOI

n-type Ge

Nitride Spacer Gate Oxide

Body Electrode

Source Drain

Gatep-type Ge

Substrate (Ground Plane)

BOX (Oxide)

n-type Si

n-type SOI

n-type Ge

Nitride Spacer Gate Oxide

 

Fig. 2. Structure of model device: The doped substrate region 

under bottom oxide acts as the GP layer. 

 

Table 1. Parameters of baseline device 

Design Parameters Value 

Gate length 24 nm 

Gate oxide thickness (Tgox) 1 nm 

SOI thickness 6 nm 

BOX thickness (Tbox) 10 nm 

Left-sidewall length 4 nm 

Right-sidewall length 8 nm 

Thickness of raised S/D 15 nm 

n-type Ge thickness 3 nm 

p-type Ge doping 1×1020 cm-3 

n-type Ge doping 1×1013 cm-3 

Doping of SOI 1×1015 cm-3 

n-type Si doping 1×1015 cm-3 

Gate work function 4.61 eV 
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Fig. 3. Definitions of threshold voltage (VT) and subthreshold 

swing (SS) in this study: Here VT is defined by the threshold 

current method with IT = 0.1 µA/µm. Here VDS = 1 V. 
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Fig. 4. Energy band diagrams and band-to-band tunneling rate 

at 0.5 nm below the gate oxide with (a) VG = 0 V, (b) VG = VT. 

Here VDS = 1 V. 
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approximately this value in order to keep both a large 

drive-current and small off-current. 

III. RESULTS AND DISCUSSION 

First, the VT-modulation of the baseline device and that 

of MOSFET are compared with variation of the GP 

doping from 1×1014 to 1×1021 cm-3 with VDS = 1 V (Fig. 

5). The smaller modulation under light doping conditions 

and with thicker BOX designs is attributed to higher 

field-sensitivity of the carrier injection of TFET devices. 

It also shows that the GP technique for the FDSOI-

MOSFET is similarly useful for TFETs if heavy GP 

doping is used. 

Next, the asymetric sensitivity to the polarity of GP 

doping is investigated using energy band contours in Fig. 

6. While p-type GP blocks the field penetration from the 

drain and influences on the potential at the tunneling 

point, n-type GP lets the drain field into the channel 

region and loses its controllability over the potential at 

the point. Therefore, p-type doping modulates VT more 

efficiently than n-type does. Meanwhile, since the SS in 

this work is defined as the average swing between VT and 

VT - 0.3×VDD and the change of GP doping does not mean 

the change of doping in the SOI region, the SS remains 

unchanged regardless of the GP doping (Fig. 7). 

Finally, the effectiveness of GP technique in the 

devices with a change of gate dielectric is studied in Figs. 

8 and 9. Although smaller Tgox helps to reduce VT, it also 

narrows down the window within which GP doping can 

modulate VT. As the BOX gets thinner, GP doping exerts 

more influence over VT to the contrary. These are 

understood from the simple capacitance network model 

described in Fig. 10. Since the potential at the tunneling 

point is determined by the capacitive coupling ratios in 

the network, tighter coupling to the top gate potential 

leads to reduced modulation window with GP. The 
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Fig. 5. Modulation of VT with GP doping (a) TFET, (b) 

MOSFET. Here the MOSFET device differs from the TFET 

only in the polarity of source. 
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Fig. 6. Contours of conduction band energy with VG = 0 V and 

VDS = 1 V (a) n-type GP doping, (b) midgap GP, (c) p-type GP 

doping. 
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Fig. 7. Change of the SS of the model TFET with GP doping. 
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degradation of SS in Fig. 9 can be similarly explained. In 

the case of n-type GP-doping, the change in SS with 

BOX thickness is insignificant because the field from the 

drain weakens the coupling of potentials between GP 

doping region and the tunneling point.  

III. CONCLUSIONS 

We confirmed that the ground-plane technique for the 

UTBB-SOI MOSFET device is extendible to TFETs. 

Due to higher sensitivity to electric field, the effective- 

ness of GP doping in TFET was relatively smaller than 

that in MOSFET. P-type GP doping blocks the field from 

the drain only to increase the VT. Since the capacitive 

coupling effect can degrade SS, a compromise between 

VT-modulation window and SS degradation is needed. 

This is practically important in that both MOSFET and 

TFET can share common VT-control scheme when these 

devices are co-integrated.  
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