DOI QR코드

DOI QR Code

Hyperthermia Properties of Fe3O4 Nanoparticle Synthesized by Hot-injection Polyol Process

Hot-injection Polyol 공정에 의해 제조된 Fe3O4 나노입자의 Hyperthermia 특성

  • 이성노 (국민대학교 물리학과) ;
  • 고태준 (국민대학교 물리학과) ;
  • 심인보 (국민대학교 물리학과) ;
  • 심현주 (한국외국어대학교부속 용인외국어고등학교)
  • Received : 2014.02.14
  • Accepted : 2014.04.16
  • Published : 2014.04.30

Abstract

The $Fe_3O_4$ nanoparticle was synthesized by the hot-injection method while varying the injection time of the precursor solution. The crystal structure was determined to be cubic inverse spinel with space group of Fd-3m based on X-ray diffraction (XRD) measurements and the morphology of the prepared $Fe_3O_4$ nanoparticle was studied with a high-resolution transmission electron microscope (HR-TEM). When the precursor solution was injected for 0.5 min, the size of the $Fe_3O_4$ nanoparticle was 7.63 nm, while the size of the obtained particle was 21.27 nm with the injection time of 60 min. The magnetic properties of the prepared $Fe_3O_4$ nanoparticle were investigated by both vibrating sample magnetometer (VSM) and $^{57}Co$ M$\ddot{o}$ssbauer spectroscopy at various temperatures. From the hyperthermia measurement, we observed that the temperature of the $Fe_3O_4$ nanoparticle powder reached around $120^{\circ}C$ under 250 Oe at 50 kHz, when the injection time of the precursor solution was 60 min.

$Fe_3O_4$ 나노입자는 hot-injection 제조법에 의해 제조되었으며 반응물질의 injection time에 변화를 주었다. 격자구조는 x-ray diffraction(XRD) 측정을 통해 Fd-3m 공간군을 갖는 cubic inverse spinel 구조로 분석되었으며, $Fe_3O_4$ 나노입자의 형상은 high-resolution transmission electron microscope(HR-TEM)으로 분석하였다. 반응물질을 각각 0.5분, 60분인 젝션시 각각 7.63 nm, 21.73 nm의 $Fe_3O_4$ 나노입자 사이즈를 얻을 수 있었다. $Fe_3O_4$ 나노입자의 자기적 특성은 다양한 온도에서 vibrating sample magnetometer(VSM)과 M$\ddot{o}$ssbauer spectroscopy로 측정하였으며, hyperthermia 측정을 통해 반응물질의 injection time이 60분일 때 50 kHz의 250 Oe에서 $Fe_3O_4$ 나노입자 파우더의 온도가 약 $120^{\circ}C$임을 관측할 수 있었다.

Keywords

References

  1. A. Vermaa, T. C. Goel, R. G. Mendiratta, and R. G. Gupta, J. Magn. Magn. Mater. 192, 271 (1999). https://doi.org/10.1016/S0304-8853(98)00592-7
  2. T. Nakamura, J. Appl. Phys. 88, 348 (2000). https://doi.org/10.1063/1.373666
  3. J. R. Liu, M. Itoh, and K. Machida, Appl. Phys. Lett. 83, 4017 (2003). https://doi.org/10.1063/1.1623934
  4. A. D. Ebner, J. A. Ritter, H. J. Ploehn, R. L. Kochen, and J. D. Navratil, Separ. Sci. Technol. 34, 1277 (1999).
  5. Y. Kobayashi, M. Horie, M. Konno, B. Rodriguez- Gonzalez, and L. M. Liz-Marzan, J. Phys. Chem. B. 107, 7420 (2003). https://doi.org/10.1021/jp027759c
  6. T. J. Yoon, J. S. Kim, B. G. Kim, K. N. Yu, M.-H. Cho, and J.-K. Lee, Angew. Chem. Int. Ed. 44, 1068 (2005). https://doi.org/10.1002/anie.200461910
  7. J.-P. Fortin, C. Wilhelm, J. Servais, C. Menager, J.-C. Bacri, and F. Gazeau, J. Am. Chem. Soc. 129, 2628 (2007). https://doi.org/10.1021/ja067457e
  8. J.-H. Lee, Y.-M. Huh, Y.-W. Jun, J.-W. Seo, J.-T. Jang, H.-T. Song, S. Kim, E.-J. Cho, H.-G. Yoon, J.-S. Suh, and J. Cheon, Nat. Med. 13, 95 (2006).
  9. N.-H. Cho, T.-C. Cheong, H. M. Ji, H. W. Jun, S. J. Lee, D. Kim, J.-S. Yang, S. Kim, Y. K. Kim, and S.-Y. Seong, Nat. Nanotechnol. 6, 675, (2011). https://doi.org/10.1038/nnano.2011.149
  10. C. B. Murray, D. J. Noms, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993). https://doi.org/10.1021/ja00072a025
  11. V. K. La Mer, R. H. Dinegar, J. Am. Chem. Soc. 72, 4847 (1950). https://doi.org/10.1021/ja01167a001
  12. Y. H. Li, T. Kouh, I.-B. Shim, and C. S. Kim, J. Appl. Phys. 111, 07B544 (2012). https://doi.org/10.1063/1.3687007
  13. M. Suto, Y. Hirota, H. Mamiya, A. Fujita, R. Kasuya, K. Tohji, and B. Jeyadevan, J. Magn. Magn. Mater. 321, 1493 (2009). https://doi.org/10.1016/j.jmmm.2009.02.070