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When taught the precise definition of π, students may be simply asked to memorize its 
approximate value without developing a rigorous understanding of the underlying reason 
of why it is a constant. Measuring the circumferences and diameters of various circles and 
calculating their ratios might just represent an attempt to verify that π has an approximate 
value of 3.14, and will not necessarily result in an adequate understanding about the con-
stant nor formally proves that it is a constant. In this study, we aim to investigate pros-
pective teachers' conceptual understanding of π, and as a constant and whether they can 
provide a proof of its constant property. The findings show that prospective teachers 
lack a holistic understanding of the constant nature of π, and reveal how they teach stu-
dents about this property in an inappropriate approach through a proving activity. We 
conclude our findings with a suggestion on how to improve the situation. 
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INTRODUCTION 
 
When learning the concept of mathematical variables in secondary algebra courses, stu-

dents inevitably come across corresponding terms that are introduced simultaneously — 
mathematical constants.Many students may be told in their lessons that a constant is simply a 
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fixed number that cannot be changed. To young minds, the idea that a certain number is fixed 
and should not, and cannot be changed is not a difficult one to grasp. It is not until they learn 
about representation of a variable number by a letter such as x that they may begin to feel that 
some fixed, invariant quantity is represented by a corresponding numeral called a constant. Yet 
constants are not emphasized in curricula in which learning the properties of constants is not an 
explicit part of the syllabus(CDC, 1999; CDC & HKEAA, 2007). 

The concept of mathematical constants is an important foundation for students’ further 
learning of many related concepts in physical sciences, such as acceleration due to gravity. 
Learning the concept of constants refers to developing an understanding of the underlying 
meaning of fixed numbers, such as their originality, how their magnitudesare evaluated, and 
their applications. Learning the underlying meaning of constants should include the role they 
play in different mathematical contexts, such as that they can represent the coefficients of a 
variable, the parameters of an equation, a ratio of two specific quantities (e.g. the famous 
Archimedean constant π), a scalar multiplier of a vector, the limit of a convergent series, or 
an exponential decay factor. It would be very appealing to students to realize that understanding 
the concept of mathematical constants is far more significant than simply treating them as fixed 
numbers. 

Teaching the concept of mathematical constants does not merely involve introducing fixed 
numbers to students; such constants have a specific role in explaining their original creation. 
Telling students about the motivation for creating such constants in a mathematical context is 
thus a necessary and indispensable aspect of mathematics lessons. Taking π as an example, 
developing a holistic understanding of its definition, numerical representation and properties, 
the role it plays in various mathematical contexts, and techniques for applying it in different 
real-life situations should be common goals of mathematics teachers and learners. 

From the time we first encounter physical constants in high school science lessons, we are 
told that many constants exist and that each such constant has a fixed value represented by a 
certain magnitude. The quick and easy association made in this context is that the meaning of a 
constant is a fixed value that is universally invariant in a theoretical sense. It takes great effort 
for teachers to explain why scientists are motivated to create such constants. The question 
“Why bother to learn about these fixed numbers?”is the common refrain of students. The 
conclusion commonly reached is that the invariant nature of constants is extremely useful, as 
they enable us to predict other quantities through the relations between constant and other 
variables. For example, the acceleration due to gravity, as a universal constant, is used to 
predict the escape velocity of a rocket launched on the Earth’s surface.On an elementary level, 
the constant π is used to predict or evaluate the distance traveled by a vehicle when the diame-
ter of its wheels and the number of times its wheels turn are known. Many students take for 
granted the concept that the value π remains unchanged for different wheel sizes. In a more 
mathematical sense, teachers may be asked why π is a constant when they introduce π to their 
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students. Does the value of π increase if the circle becomes larger? In solving related problems, 
we simply assume that π is a constant, and proceed to find the required answer by calculating 
formulae in which π is assigned the approximate value of 3.14. This is because we are all told 
that π is a constant and, for every circle, the value of π will be unchanged. The problem here is 
how to explain to students that π is a constant. Even though we introduce historic literature on 
how π is evaluated and estimated, what is lacking is a complete argument that leads to the 
conclusion that it is constant by its nature. In short, it is difficult to convince students that π is a 
constant. 

The Hong Kong primary school curriculum (CDC 1999; CDC & HKEAA, 2007) does not 
include any proof of the constant nature of π; in secondary school, the curriculum simply 
accepts its status as a constant without providing a rigorous understanding of why this is so. 
Regardless of whether this reflects an attitude problem among teachers who are unwilling to 
investigate the constant nature of π, or whether teachers simply gloss over the importance of 
understanding π by adopting a less rigorous attitude, both attitudes will have a negative effect 
on classroom teaching quality. Moreover, the ability of students to rigorously pursue mathe-
matical excellence is likely to be hindered. Based on these observations, it seems that we 
should develop prospective teachers’ knowledge of how to prove that π is a constant in a 
logical and systematic manner.  

 
 

THEORETICAL FRAMEWORK 
 
In-depth studies carried out in recent decades show how well-prepared prospective teachers 

understand certain topic-specific mathematical concepts, such as the definitions of functions 
and composite functions (Meel, 1999; Sanchez &Llineares, 2003), the underlying meaning of 
division of fractions (Li &Kulm, 2008; Li & Huang, 2008; Ball 2005), their ability to justify 
examples and counter-examples in teaching the concepts of limits and continuity in calculus 
(Gruenwald&Klymchuk, 2003) and pre-service teachers’ knowledge of proof by 
mathematical induction (Styliandies, Styliandies&Philippou, 2007). Most, if not all, of these 
studies show those prospective teachers generally lack a complete understanding of the 
underlying meaning of such topic-specific concepts and have difficulty teaching them. They 
simply do not possess the knowledge expected of professional teachers, who must know what 
they teach. Wu (2011) described the knowledge teachers should possess in precise terms by 
saying: 

...only that they must know the content of what they teach to their students.Here I am 
using the word ―knowin the unambiguous sense that mathematicians understand 
this term: knowing a concept means knowing its precise definition, its intuitive con-
tent, why it is needed, and in what contexts it plays a role, and knowing a technique 
means knowing its precise statement, when it is appropriate to apply it, how to prove 
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that it is correct, the motivation for its creation, and, of course, the ability to use it cor-
rectly in diverse situations (p. 380). 

 

In the context of the constant π, in addition to being able to describe its definition, estimate 
its value and know how to apply it, we must also know how to demonstrate, or in a stricter 
sense, prove, its constant nature. The question that subsequently arises is: what is meant by the 
term “proof”? Balacheff (1991, p. 109) refers to proof as a discourse whose aim is to establish the 
truth of a conjecture. However, he emphasizes that it is not necessarily a mathematical 
proof. For mathematical proof (of a proposition), according to Balacheff (1991), we general-
ly refer to a series of deductive reasons for sequentially axiomatic arguments based on true 
assumptions of known results and fundamental postulates. In his paper, Griffiths (2000, p. 2) 
precisely defines mathematical proof as a formal and logical line of reasoning that begins 
with a set of axioms and moves through logical steps to a conclusion. Balacheff (2010) 
further explains how to bridge knowing and proving in mathematics. His argument pinpoints 
the fact that teachers may not be able to formulate a formal proof of the constant nature of 
π, for example, even though they are secure in the knowledge it is a fact. He adds that it is 
not feasible to learn mathematics without learning mathematical proofs, writing as follows: 

Hence, the answer to the question: “Can one learn mathematics without learning 
what a mathematical proof is and how to build one?” is “No.” (p. 115) 

 

As mathematics teachers, we may have the experience of students asking why the famous 
number π is a constant. The reactive answer could be to tell students to construct many 
circles to verify the consistency of the ratio of their circumferences to their diameters. Though 
contemporary mathematics educators have not always agreed on what does and does not 
constitute a proof (Dreyfus 1999), this is still not a proper or formal proof, as continuous 
measurements can serve only as a kind of verification, and are not sufficiently rigorous to be 
called a proof. According to Blum & Kirsch (1991), in our case, verifying the constant nature 
of π by obtaining values from several circles of different sizes can provide proof only at 
the first of its three primary levels: experimental proof, intuitional proof and formal (scientific) 
proof. To a great extent, experimental proof (measurement of various circles) is only a kind of 
verification. We may wonder how to prove that π is a constant, or at least demonstrate a 
mathematically, logically acceptable sequence of arguments to deduce that this is so. Teachers 
may simply tell their students to accept that it is a constant in the sense that its value is consis-
tent for every single circle. However, giving formal proof of the constant nature of π will 
certainly lead to better training to develop students’ understanding of rigour in mathematical 
proofs, which we believe is beneficial to further learning of advanced mathematics. Although 
Balacheff (2010) asserts that “learning and understanding mathematics cannot be separated 
from understanding its intrinsic means for validation: mathematical proofs”.Another study by 
Weber (2001) shows that undergraduate students may not even be able to demonstrate tech-
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niques for proving mathematical propositions. 
According to Ball, Lubienski&Mewborn (2001), even university students majoring in ma-

thematics may not have sufficient subject content knowledge to enable them to teach the 
discipline. As a particular example, Li & Huang (2008) verified that there is a discrepancy 
between what many pre-service teachers perceive to be their level of knowledge about frac-
tional division and their actual knowledge about it. In another investigation, Ball (2005) shows 
how much of an effect teachers’ knowledge has on student achievement. In the MT21 Report, 
Schmidt et al. (2007) put the priority in teachers’ preparation (before beginning their teaching 
career) on improvements aimed at filling the gap in teacher education between Western nations 
and their Eastern counterparts. It seems that teachers must have a sound understanding of the 
concepts they teach before their students can understand them. 

In his most widely cited study, Shulman (1986) identifies two components of knowledge 
about mathematics teaching: mathematical content knowledge (MCK) and pedagogical content 
knowledge (PCK). Hill, Ball & Schilling (2008) further generalised these two components into 
subject matter knowledge (SMK) and PCK, in which the former consists of common content 
knowledge, specialised content knowledge and knowledge at the mathematical horizon, 
whereas PCK consists of knowledge of the curriculum, knowledge of teaching and knowledge 
of students, etc. A well-equipped teacher should theoretically possess these two components of 
knowledge. 

In contrast, Blomhøj& Valero (2007) suggest that changes to prospective teacher 
education are more likely to bring improvements in classroom instruction, especially if 
“teachers’ mathematical knowledge gets closely related to didactical knowledge in contexts of 
teaching experience or concrete teaching situations”. During the educational reform period, 
higher order thinking skills—such as reasoning, proofs and argumentation—have drawn much 
attention among the mathematics education community (Wong, Han & Lee, 2004). In their 
investigation, Schwarz et al. (2008) compare the competencies of prospective mathematics 
teachers from three distinct regions: Hong Kong, Australia and Germany. It is found that 
prospective teachers from these regions cannot adequately execute mathematics proofs even 
at the lower secondary level. It appears that prospective teachers do not possess sufficient 
skills and knowledge to enable them to teach proofs, even though they may satisfy manda-
tory mathematical background requirements. Our investigation of teachers’ knowledge about 
the proof of π and related proving activities supports our firm belief that teachers’ knowledge 
of teaching is a matter of concern in facilitating effective student learning about conceptual 
understanding of the constant nature of π. This knowledge will make a partial contribution to 
teachers’ PCK and SMK. 

In their investigation, Stylianides& Ball (2008) identify two main components constituting 
knowledge about proof for engaging students in proving:  
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(1) Knowledge about the logico-linguistic structure of proof; and  
(2)  Knowledge of the situation for proving.  
 

The former generally refers to knowledge of arguments, explanations and logical derivation of 
proofs.The latter is further subdivided into two components (p. 313): 
 

· Knowledge of different kinds of proving tasks (KPT); and 
· Knowledge of the relationship between proving tasks and proving activity 

(KRTA). 
 

They further argue that it is important for teachers to possess knowledge of different kinds 
of proving tasks (KPT) to enable them to draw analogies to the domain of proof in teaching, 
and to have knowledge of the relationship between proving tasks and proving activity (KRTA), 
that is, to understand the critical mathematical aspect of the proving activity that can be 
provoked by certain kinds of tasks (Stylianides& Ball, 2008). This understanding is essential in 
teaching proofs in a mathematics lesson. Hence, a study of how rich prospective teachers’ 
knowledge is about the constant nature of π, conducted from the KPT and KRTA perspectives, 
would be of great interest and provide practical implications for the improvement of 
mathematics teacher knowledge competency. 

Based on our assumptions stated above, we investigated, through proper instrumental item 
questions on teaching proofs and executing proving activities about the constant nature of π, 
how well-equipped our prospective teachers are in terms of the two key components of 
knowledge of situation for proving. 
 

(a)  To assess their knowledge of different kinds of proving tasks (KPT), 
prospective teachers were tested on their: 

 

· Knowledge of using the concept of linearity to prove the constant nature of π. 
This linear relationship between the circumference and diameter of a given circle 
is shown as  straight line plotted from the points representing the ordered pairs 
of the respective circumferences (C) and diameters (D) (see Figure 1); and 

· Ability to connect the geometric property to algebraic derivation in proving the 
constant nature of π geometrically. 

 

(b)  To assess their knowledge of the relationship between proving tasks and 
proving activity (KRTA), prospective teachers were tested on their: 

 

· Ability to describe the advantages and disadvantages of various methods of prov-
ing the constant nature of π; 

· Responses to students’ enquiries about its definition and constant property; 
· Approaches used to handle discrepancies generated through experimental activi-

ties; and 
· Competency to choose a suitable approach to teach the concept of mathematical 

constants, π in our case. 
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engaging students in proving
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and inductive reasoning skills and mathematical language proficiency.
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disadvantages, and to respond to students’ queries on the conceptual understanding of how the 
value of π is found experimentally (see Appendix I). The participants were then asked to 
provide an alternative proof for the constant nature of π in addition to those used by students 
in the activities hypothetically described in the questionnaire. The best and most easily 
understood method of proof is to use the property of similarity of circles. The connection 
between algebraic and geometric concepts was the key ingredient of subject knowledge tested 
among the participants. 

The three hypothetical methods stated in the questionnaire that the three students used to 
find the value of π are basically experimental by nature. Students first drew several circles, 
then calculated the ratio of the circumference and the diameter after measuring them in each 
circle. The students thus found the ratio and then the estimated value of π after performing 
some simple division calculations. However, discrepancies arose in: 
 

· Calculating π by dividing the circumference by the diameter; 
· Calculating π by dividing the diameter by the circumference; and 
· Finding π by estimating the slope of a straight line plotted on a graph compiled 

from the ordered pairs of circumferences and diameters measured. 
 

Some of our item questions were aimed at testing how to resolve these discrepancies gener-
ated by the students’ experiments from various perspectives. In light of how Wu (2011) 
defines knowing a mathematical concept, and in particular how to prove that it is correct, we 
aimed to use a proving activity to test prospective teachers’ knowledge of proofs and proving 
tasks concerning the invariant nature of the magnitude of π. 

We must be precise in explaining that when we used the term “finding the value of π” in 
the hypothetical situations described in the questionnaire, we did not specify whether there 
was only one fixed value of π or many possible values for π. Students sought to 
find an approximate value, yet,they did not know whether it was a constant. 

 
 

DATA ANALYSISAND RESULT  
 

Because we are investigating prospective teachers’ knowledge competency, our target 
population is prospective teachers in undergraduate years three and year four, or PGDE from 
four local universities. Our sample size (76 questionnaires data sets collected) is relatively 
small. We analyze their responses to the item questions from a qualitative perspective only 
according to three main reasons and interpretational perspectives: mathematical, didactical and 
practical. This means that when valid responses are expressed in terms of a mathematical 
judgment or reasoning on proofs and proving activities, we put them in the mathematical 
category; when responses are expressed as taking account of pedagogical reasons such as 
students’ capabilities, task design, smoothness of lesson plan execution, etc., we place them 
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in the didactical category; and when students are told to “measure more circles” or “be more 
careful in using measuring tools”, etc., we place the teacher’s response in the practical-
category. To be clear, valid responses refer to answers in which the correctness or 
appropriateness of the method used can be judged regardless of the category. For example, 
one prospective teacher’s response in saying “use a better calculator” to answer a question on 
how to reduce discrepancies in finding the value of π was valid, because we can judge whether 
or not using a better calculator is appropriate. In contrast, invalid responses, as well as irrele-
vant, wrong, or meaningless responses or answers, are categorized as irrelevant or others. The 
coding rules are applied by two independent mathematics educators. Discrepancies in their 
categorization of responses are regulated by repeat codes assigned by a third educator. 

 
Reasons for discrepancies in measuring the value of π and methods to reduce them 
 

When answering a question about why the three students found three different values and 
how to reduce the differences between them, prospective teachers overwhelmingly took the 
view (93.4%) that it was because of the experimental setup, instrument errors and human error 
in measurement — the first principle (1st principle) of conducting scientific experiments. Typical 
responses relating to the first principle of scientific experimentation also included suggesting 
more trials (measuring more circles) or using better instruments (85.5%) to improve accura-
cy and reduce discrepancies. The participants did not seem to consider other more didactical 
reasons, such as classroom management, a lack of interest among students or impartial at-
tempts. They seemed to assume students were very eager to complete the task the teacher 
assigned, a highly unrealistic scenario in a real classroom setting. Many students find direct 
measurement activities monotonous. No prospective teachers thought the discrepancies 
observed were caused by students’ mathematics knowledge, and only one prospective teacher 
suggested reducing the magnitude of discrepancies by considering them from a mathematical 
perspective, saying “review the definition of errors...”(Script 048). This teacher did not quite 
seem to understand that knowing how to define errors will not necessarily lead to accuracy. 
The irrelevant/others category in Table 1 refers to responses such as “I do not know”(Script 
023) or asking to “provide data to students directly”(Script 060). 

Table 1. Reasons for discrepancies in measuring the value of π and different 
methods used to reduce discrepancies in its estimated value 

 Mathe-
matical 

Practical 
 (1stprinciple) 

Didactical 
Irrelevance Others Blank Total 

Causes of discrepan-
cies 

0 71 2 3 0 76 
0.0% 93.4% 2.6% 4.0% 0.0%  

Methods used to 
reduce 

discrepancies 

1 65 2 3 5 76 
1.3% 85.5% 2.6% 4.0% 6.6%  
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Advantages and disadvantages of various methods 

In a similar manner to that described in the previous section, we distinguish be-
tween prospective teachers’ responses with explanations to being asked about the advantages 
and disadvantages of the three respective methods into four categories: mathematical, didac-
tical, practical and irrelevant. More specifically, mathematical refers to responses in 
which prospective teachers considered students’ subject knowledge only. Didactical 
refers to responses whereby prospective teachers considered the suitability of the experiment 
(activity) being implemented according the lesson design: whether it was explorative, how 
students might discover the expected result, the suitability of using a guided or unguided 
discovery approach, etc. Practical considerations refer to the efficiency of measurement tools 
(e.g. rulers,strings, etc.) used and how skillfully students used them. The remaining responses, 
such as those referring to reasons relating to the environment or classroom conditions, are placed 
in the irrelevant category. For example, 10 counts in Mathematical–Adv in Table 2 refers to 
those responses telling the advantages of employing Method A in the Mathematical perspec-
tive. 

Table 2.Prospective teachers’ knowledge about the advantages and disadvantages 
of the three experiments used by the three respective students 

 
Mathematical Didactical Practical Irrelevant/ others Blank 

Adv Disadv Adv Disadv Adv Disadv Adv Disadv Adv Disadv 
Original 

definition 
(Method A) 

10 5 7 8 44 38 10 5 5 20 
13.2% 6.6% 9.2% 10.5% 57.9% 50% 13.2% 6.6% 6.6% 26.3% 

Reciprocal 
(Method B) 

11 6 4 9 30 44 6 6 25 11 
14.5% 7.9% 5.3% 11.8% 39.5% 57.9% 7.9% 7.9% 32.9% 11.8% 

Linearity 
(Method C) 

33 18 5 9 19 27 8 8 11 14 
43.4% 18.4% 6.6% 11.8% 25% 35.5% 10.5% 10.5% 11.8% 18.4% 

 

The frequency counts show that more prospective teachers paid attention to accuracy in 
measuring the value of π than did those who paid attention to mathematical and didactical 
reasons. These responses concerning the advantages and disadvantages of each method are 
skewed toward the practical category (57.9% and 50.0% for the advantages and disadvantages 
of Method A, respectively; 39.5% and 57.9% for the advantages and disadvantages of Method 
B, respectively; see Table 2). Prospective teachers seemed to believe that the concept of a 
constant π would be taught effectively if students were more careful and skillful in their 
measurement procedures. Even though direct measurement (an experimental approach) is a 
more or less informal method of proving the concept and constant property of π, we expected 
prospective teachers to be able to identify its advantages and disadvantages by considering 

 



Prospective Teachers’ Understanding of the Constant π andtheir Knowledge … 11

mathematical and didactical reasons. However, the statistics show that many of them tend to 
consider both its advantages and disadvantages from a practical perspective. The hidden 
assumption prospective teachers may make is that π has to be a constant to give a mathematical 
sense to its accuracy. An experimental activity of this kind will be executed in a common 
sequential order: 
 

Measurement – Finding – Verification – Conclusion 
 

Prospective teachers considered accuracy in finding the value of π important. At least this 
reflects their belief that the more accurate the values students obtain, the more easily the teacher 
can explain the constant property of π. The above procedural steps seem to represent a legitimate 
approach preferred by prospective teachers in demonstrating its proof. 

A large number of responses also argued for the mathematical advantages of employing 
Methods C in comparison with Method A and B. This may reflect a belief among prospective 
teachers that different approaches may stimulate students’ mathematical thinking in the course 
of the experiment; however, other prospective teachers seem to think it risky (disadvantageous) 
to use these two methods. In other words, they may think that although Method A is quite safe 
from a mathematical perspective, it is difficult for students to use the other two less common 
methods, even though they might acquire more mathematical knowledge by doing so. 

In a consistent finding, relatively few prospective teachers considered the advantages and 
disadvantages of the three methods from a didactical perspective, as they tended to treat the 
experiment as a routine activity involving measuring something accurately. The level of 
preliminary mathematics knowledge required to carry out the experiments efficiently was 
relatively low. Didactical judgment of the adequacy of the three methods thus plays a more 
important role. To a certain extent, the low percentage of responses made from the didactical 
perspective reflects a KRTA weakness among prospective teachers, particularly where the 
three methods represent attempts to find the approximate value of π and verify its constant 
property. 

In addition, the large number of practical responses prospective teachers made in relation to 
student B’s method shows they consistently expected the student to consider running more 
trials in the hope of obtaining a more accurate measurement of π. Again, these responses show 
both KPT and KRTA weaknesses among prospective teachers. More measurements do not 
guarantee reduced measurement error, while taking many trial measures is not a 
scientifically realistic approach. The opposite effect may occur if students find that measuring 
more circles generates more errors. This will affect students’ belief in the constant nature of π. 

According to Dreyfus (1999, p. 105), teachers should be able to relate experimentally based 
reasoning which is derived from the measurement of data in our case to whether it can be 
justified as a prerequisite for an explanation and as an argument for a conjecture. This 
justification will eventually provide a clue on how to prove a particular proposition. The 
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responses made to this question show that prospective teachers still have some degree of 
weakness in their knowledge of this issue. 

 
Alternative definition of π – what is wrong with the reciprocal? 

Regardless of the historical reasons (e.g. finding the value of π by continuously cutting a 
circle), using the ratio of the circumference of a circle to its diameter is simply a convention 
employed to represent π. Using the reciprocal of the ratio to define π is not mathematically 
inconsistent with the intention of its original definition. Of the prospective teachers examined 
here, 38.2% (29 out of 76 responses in the irrelevant category; see Table 3) still sought to 
convince their students that we have used such a measure of π for a long time, saying it is a 
convention we should simply follow. Prospective teachers were not able to demonstrate 
that the reciprocal of a constant is also a constant; 44.7% (34 out of 76) tried to convince their 
students from a practical perspective. Some even responded by saying that it will be more 
convenient to use a π larger than 1” because the reciprocal will be less than unity. Prospective 
teachers’ responses from a practical perspective were quite consistent, even though defining 
π as larger than 1 does not violate mathematical reasoning. As a proving activity for lessons, 
investigating the reciprocal of π is still a good experience for students. However, prospective 
teachers do not seem to accept such an irregular approach. 

Table 3.Consideration of taking an alternative value of π — reciprocal of the value 
in the original definition 

Counts 
Mathematical Didactical Practical Irrelevant/ 

others Blank Total 

7 1 34 29 5 76 
9.2% 1.3% 44.7% 38.2% 6.6%  

 
π is independent of the size of a circle 

When challenged by students on the reason π remains unchanged as the size of the circle 
increases, only 20% (15 out of 76; see Table 4) of the prospective teachers responded from a 
mathematical perspective, while 63% (48 out of 76) still believed that undertaking more 
measurement trials would reveal a better approximate value of π, and answered the question on 
this basis. The students’ questions referred to two aspects: whether π is a fixed value, and 
whether it increases with respect to the size of the circle. However, more trials may result in 
fluctuating values of π; they do not help to explain its constant nature. In this respect, we can 
see that the KPT of prospective teachers is relatively weak. 
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Table 4.Distribution of prospective teachers’ perspectives on judging the constant 
nature of π 

Counts 
Mathematical Didactical Practical Irrelevant/ 

others Blank Total 

15 1 48 8 4 76 
20% 1% 63% 11% 5%  

 
Choice of formal proof of the constant nature of π in a lesson 

More than 43% of the prospective teachers chose Method A (Table 5), which involves tell-
ing students to measure the circumference and diameter of a circle and calculate their ratio. 
However, these prospective teachers paid most attention to accuracy rather than to the 
mathematical definition. 

Table 5.Preference for (and explanation of) methods by prospective teachers in 
their lessons 

Choices Mathe-
matical Didactical Practical Irrelevant Blank Total 

Method A 5 22 4 2 0 33 (43.4%) 

Method B 0 0 0 0 0 0 (0.0%) 

Method C 12 10 0 1 1 24 (31.6%) 

Others 1 3 1 5 9 19 (25.0%) 

Total 18 35 5 8 10 76 

 
Twenty-four prospective teachers (31.5%) adopted the linearity method, with almost half of 

them believing that this method (Method C) makes it easier for students to construct the 
concept of a constant π. The other half adopted this method because a straight line is easier to 
draw correctly, which implies the concept of a constant π. We select two particular responses 
by way of illustration. In the first, the prospective teacher explained that the slope of a straight 
line connecting points of ordered pairs (circumference, diameter) leads to a proof of the 
constant nature of π, as the slope of a straight line is always a fixed value (Script 002, in which 
some parts are not explained clearly). The other prospective teacher (Script 041) correctly 
explained from a didactical perspective that the linear relationship of the circumference and 
diameter plays a key role in showing the constant nature of π, and that this is particularly 
useful in science subjects (See Figure 2). He/she also explained the reason errors occur, and 
said that errors are acceptable in an experiment like this. This demonstrates the richness of 
both the KPT and KRTA of this particular prospective teacher. Unfortunately, only 24 of the 
participants chose to employ this method, and just 12 (16%) of them could apply the 
concept of linearity appropriately to argue for the constant nature of π. This low percentage 
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indicates that our prospective teachers’ knowledge of the topic is relatively weak. 
Unexpectedly, 9 of the 76 prospective teachers did not respond to this question (blank 

responses). It is not known which of the three methods these prospective teachers prefer as an 
alternative, as they did not nominate one. This shows that prospective teachers seem 
unprepared to teach the concept of a constant, and are not ready to explain this property in their 
lessons. 

 (Script 002)  
 

 (Script 041)   
Figure2.The explanations given by two prospective teachers (Scripts 002 and 041) 

on using the concept of thelinearity of a straight line plotted on  
a coordinate system 

 

Connection between algebraic and geometric concepts 

Twenty (26.3%; see Table 6) of the prospective teachers claimed they had no idea how to 
explain that π is a constant (blank responses), while 15 (20%) used historic events and justifi-
cations given by many mathematicians, or online information, as sources to persuade students 
to accept that π is a constant. Of these 15 prospective teachers, only 6 explained that π is a 
constant using the similarity of circles. Of the prospective teachers, 17 + 11 = 28 (36.9%) 
sought to improve the accuracy of experimental measurements using computer software or 
more sophisticated tools (such as Taylor’s series expansion, a method not taught at the lower 
secondary level) as an indirect means of verifying that π is a constant. They seemed unaware 
that improving accuracy in measuring the magnitude of π already assumes indirectly that π 
itself is a constant. Such endeavours are simply aimed at finding a value as close as possible 
to the exact value of this constant. They were not aware that this does not represent proper 
proof of the constant nature of π. 
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Table 6.Consideration of how to explain π is a constant (*6 prospective teachers 
explained that π is a constant by applying the similarity of circles) 

Counts 
Mathematical Didactical Practical Irrelevant Blank Total 

15 
19.7% 

13 
17.1% 

17 
22.4% 

11 
14.5% 

20 
26.3% 

76 
 

 
 

DISCUSSION ANDCONCLUSION 
 

The alternative method of proving the constant nature of π lies in the fact that we have 
to connect the algebraic interpretation with a prominent geometric property of circles: any 
two circles are similar. The lengths of the corresponding sides of every pair of similar plane 
figures are proportional, thus implying that π is a constant. The following figure showing a 
circular disc and its projected shadow on a parallel plane can be found in many text books 
illustrating the similarity of any two circles: 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure3. A circular disc and its shadow under a light bulb form two parallel cross-

sections of a circular cone – anillustration  
of the similarity of two arbitrary circles 

 
π is defined by the ratio of the circumference of a circle to its diameter. Learners sometimes 

overlook the mathematical meaning of this rule for a circle. Learners and teachers who are 
rigorously trained in the interpretation or analysis of mathematical notions can quickly identify 
that this circle is arbitrary: for a given circle, without loss of generality, the ratio is considered 
consistent and is invariantly independent of its size. Hence, regardless of the size of the circle, 
the ratio π does not change. More precisely, π is a constant. However, this is a verbal 
interpretation only; does a proof of this rule exist? The answer lies in the fact that the ratio is an 
algebraic notion, whereas various circles sharing similar characteristics reflect a geometric 

Circular disc 

Shadow 
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interpretation. Prospective or in
the geometric property. It is clear that while the algebraic result gives the constant nature of π 
because it is a ratio, the geo
dimensions of geometric figures (circumferences and diameters in our case) by application 
of the property of similarity 
as a sequential derivation of:
 

(i) Any two circles are similar;
(ii) The ratios of their corresponding sides (edges) are equal; and
(iii) The ratio π of the circumference of a given circle to its diameter is a co

stant, regardless of the size of the circle.
 

A few simple deductive steps involving mathematical derivations from (i) to (iii) lead 
to proof of the constant nature of π. The following response demonstrates how to use similarity 
to prove the constant nature of π (Script 017)
 

Figure 4.Valid proof 

 
The above proof is essentially geometrical and analytic (Park

construct many circles or use the experimental approach studied in the last section. Similarit
will do the job. However, our prospective teachers seem incapable of generalising a concept 
(similarity of figures) for one mathematical topic (geometry) to another. Competence in 
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interpretation. Prospective or in-service teachers are expected to link the algebraic result with 
the geometric property. It is clear that while the algebraic result gives the constant nature of π 
because it is a ratio, the geometric property is linked to the ratio of the corresponding 
dimensions of geometric figures (circumferences and diameters in our case) by application 

 (See Figure 3). Consequently, the mathematical logic can be written 
derivation of: 

ny two circles are similar; 
he ratios of their corresponding sides (edges) are equal; and

The ratio π of the circumference of a given circle to its diameter is a co
regardless of the size of the circle. 

A few simple deductive steps involving mathematical derivations from (i) to (iii) lead 
proof of the constant nature of π. The following response demonstrates how to use similarity 
prove the constant nature of π (Script 017)): 

 
.Valid proof of the constant property of π by the similarity of circles.

(Script 017) 

The above proof is essentially geometrical and analytic (Park, 2005). We do not need to 
construct many circles or use the experimental approach studied in the last section. Similarit
will do the job. However, our prospective teachers seem incapable of generalising a concept 
(similarity of figures) for one mathematical topic (geometry) to another. Competence in 

service teachers are expected to link the algebraic result with 
the geometric property. It is clear that while the algebraic result gives the constant nature of π 

metric property is linked to the ratio of the corresponding 
dimensions of geometric figures (circumferences and diameters in our case) by application 

. Consequently, the mathematical logic can be written 

he ratios of their corresponding sides (edges) are equal; and 
The ratio π of the circumference of a given circle to its diameter is a con-

A few simple deductive steps involving mathematical derivations from (i) to (iii) lead 
proof of the constant nature of π. The following response demonstrates how to use similarity 

of the constant property of π by the similarity of circles. 

2005). We do not need to 
construct many circles or use the experimental approach studied in the last section. Similarity 
will do the job. However, our prospective teachers seem incapable of generalising a concept 
(similarity of figures) for one mathematical topic (geometry) to another. Competence in 
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cross-topical knowledge transfer is an essential aspect of subject content knowledge among our 
teachers. Our investigation illustrates why we need to enhance the subject content know-
ledge of pre-service teachers, particularly in their teachers college studies. 

One may argue that the corresponding sizes or edges of two circles should not include the 
diameter, as the diameter lies inside the circle. Students may not perceive the diameter as the 
side or edge of a figure. However, this approach can be easily defended, as we can consider the 
semi-circle instead. Furthermore, each circle can be interpreted as a shape that can be 
decomposed into an infinite number of mutually identical isosceles triangles with the centre as 
their common vertex. Application of the property of similarity between any two triangles will 
also lead us to conclude that any two semi-circles are similar. Hence, the rule that π is a 
constant can be deduced. 

One may argue further that as Method A represents an initial step in Method C, prospective 
teachers may go no further in requiring their students to explore the linear relationship, but may 
instead explain the approximate value of π under the assumption that it is a fixed value. Perhaps 
this is a common phenomenon that occurs in many mathematics lessons. However, the purpose of 
this investigation is to point out the KPT and KRTA weaknesses of our prospective teachers. 
Because “measuring more circles” (as in Method A) is not a proper mathematical approach to 
proving the constant nature of π, it can only serve to verify the approximate value of π, while 
the constant nature of π is assumed as a precondition. Linearity is a very important mathemati-
cal concept students must learn to enable them to understand that one variable is linearly 
dependent on another. Method A represents an experimental activity which is simply a kind of 
pre-formal proof (see Figure 4) leading to formal proof of a proposition (Tall, 1999), whereas 
the concept of linearity is a catalyst acting as a pre-formal to formal bridge in the entire 
proof of the constant nature of π. This concept leads from an informal way (Method A in our 
case) to a more formal way (Method C) of reasoning in a mathematical proof (see Zandieh& 
Rasmussen, 2010). It is also a kind of prerequisite knowledge enabling students and 
teachers to make the transition from pre-formal to formal proof (Moore, 1994). Under the 
secondary school curriculum, rectangular coordinate systems are taught in early secondary 
classes. We believe that students are capable of grasping this concept of linearity, and must 
learn it by plotting straight lines in a coordinate system if they are not familiar with it. 
Of course, the best form of preparation among competent prospective teachers is to acquire 
bothknowledge about the logico-linguistic structure of proof (both algebraic and geome-
tric methods) and knowledge of situation for proving (Stylianides& Ball, 2008) on how to 
prove the constant nature of π. To echo Balacheff’s (2010) assertion, we cannot learn the 
underlying mathematical meaning of the constant property of π without knowing how to 
prove it is a constant. In a similar manner, the concept of linearity can be applied in learning 
about the invariance of many mathematical ratios, knowledge both prospective and in-
service teachers should possess. 
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Figure5.Knowledge of linearity as a catalyst leading from pre-formal to formal proof 
as illustrated in themodified concept map of cognitive  

development of proof originally proposed by Tall (1999) 
 
The constant slope of a straight line plotted by using points representing ordered pairs of 

circumferences and diameters reflects the invariance of the ratio of the circumference to the 
diameter, and is thus connected to the idea of the corresponding edges of similar figures 
having a constant ratio. Such cross-topical knowledge among teachers seems to point to the 
fact that subject content knowledge plays a crucial role in the smooth execution of all proving 
activities employed in lessons. Though our example does not solely reflect the relative impor-
tance of subject knowledge in mathematics teaching in comparison with that of pedagogical 
knowledge, this investigation echoes the assertion of Belfort &Guimaraes (2002) and Li,Fan 
& Zhu (2010): subject content knowledge guides pedagogy. We believe that further under-
standing and theoretical development is required before we can apply this concept to mathe-
matics teacher education. 
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APPENDIX I 

 
The item instrument: 
As a teacher, you construct a circle on a chalkboard in front of your class and define the ratio 
by dividing the circumference of the circle by the length of its diameter. You then tell your 
students that this ratio is the number π. Three students conduct separate experiments to find the 
value of π: 

(i)  Student A measures the respective circumferences and diameters of five circles and cal-
culates the average of 3.13, and states that the ratio of the circumference to the di-
ameter is approximately 3.13. He also claims that π must be a fixed value ap-
proximately equal to 3.13. 

 

Circle Circumference Diameter C/D 
1 12.5 4.1 3.05 
2 17.3 5.6 3.09 
3 11.8 3.8 3.11 
4 19.2 6.1 3.15 
5 21.7 6.7 3.24 

Average 3.13  

(ii)  Student B proceeds with a similar approach to that of student A. However, he finds that 
the ratio of the diameter to the circumference is 0.317 (an average value measured from 
three circles). Taking the reciprocal of 0.317 gives 3.155. This is π. 

 

Circle Diameter Circumference D/C 
1 13.4 42.7 0.3138 
2 10.7 33.0 0.3242 
3 9.6 30.6 0.3137 

Average 0.317 

(iii) Student C looks for ordered pairs (circumference, diameter) and plots the points 
represented by the ordered pairs on a graph. 

Circle Circumference Diameter (D, C) 
1 9.5 3.0 (3.0, 9.5) 
2 16.4 5.1 (5.1, 16.4) 
3 24.5 7.9 (7.9, 24.5) 
4 31.4 10.5 (10.5, 31.4) 
5 41.3 12.8 (12.8, 41.8) 
6 43.8 14.6 (14.6, 43.8) 
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Student C claims that there is some relationship between C and D, as they increase simulta-
neously. Therefore, as a ratio of C to D, π must be a fixed number approximately 
equal to 3.1. 

Q1: How would you explain why the students find different values of π 
fromtheir measurements? 

Q2: Because there are discrepancies in estimating the value of π, can you suggest any 
methods to improve the estimated value? 

Q3: As a teacher, please comment the advantagesand disadvantages of delivering the 
concept (definition) and property (a constant) of π through the respective methods 
employed by the three students. 

Q4: Student B claims that the “diameter to circumference” ratio is the reciprocal of π 
and is also a constant. He questions why we do not use this number instead. 
How would you explain why? 

Q5: Student B asks why the values are not calculated precisely, and says: “I am not 
convinced that π is a constant. π may be 3.15, 3.16 or even 3.2 for a larger circle 
because the circles I have drawn are larger than those of student A; it is not 
3.1416,..., it is not a constant”. As a teacher, how would you respond? 

Q6: Imagine you are going to teach classes of early secondary students who have some 
basic knowledge of what has been discussed by the three students above in re-
lation to the property of π. Explain which method you would use in your lesson 
and why. 

Q7: How would you explain that π is a constant other than by using the three trial 
methods employed by the students above? 
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APPENDIX II 

 
Coding rubrics for the item questions: 
 

Q1. How do you explain why the students find different values of π from their measurements? 

Category Definition Encoding rules Examples 

A 
Mathematical Discrepancy due to students’ 

weakness of knowledge 
Do not know the meaning of 

ratio, rounding off skill 

B 

Didactical – consider-
ing students’ basic 

skills of doing expe-
riments 

Students do not understand 
teachers’ instruction proper-

ly; disciplinary reasons; 
teacher’s classroom man-

agement 

Environmental / experimental 
set up is not proper; too many 
students in a group, students 

cannot compromise a suitable 
approach 

C 

Practical / 1stprinciple 
– due to experiment 
set up and human 

errors 

Deduce the constant nature 
of π by simply trial a few 

morecircles; totally experi-
mental approach 

Measurement errors; tool / 
instrumental errors 

Different methods of measure-
ment of diameters and circumfe-

rence 

D 

Irrelevant / others Environment reasons, or 
other reasons not related to 
anyone of the above three 

categories 

Students are lack of interest due 
to other reasons such as feeling 

tired of working 

 

Q2. Since there is discrepancy in estimating the value of π, can you suggest any methods to 
improve it? 
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Cate-
gory Definition Encoding rules Examples 

A Mathematical 
consideration 

Reasonsof mathematicalk-
nowledge 

understand the meaning of  
errors, 

review the definition of π 

 Practical/1stprinciple suggesttousemore 
sophisticatedtoolsand 

methods 
get more data 

use a larger circle 

measure more circles 
use a better calculator / use 

computerprogrammingto 
calculate 

considertousemore 
significant figures 

B Didactical– 
considering students’ 
basic skills of doing 
experiments 

Give incentive to students to 
make them do it in a more 

positive manner 
Reduce their class work load 

Puttheexperiment as  
acontest,give pricetothe 

winner / winner group. 
measure one circle by one 

student 
same person measure

 all 
circles 

C Irrelevant/others Other reasons not related to 
anyone of the above three 

categories 

Provide data directly to stu-
dents 

 

Q3. Being a teacher, please comment the advantages and disadvantages of delivering the 
concept (definition) and property (a constant) of π through the methods employed by the three 
students respectively. 
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Advantages 
Cate-
gory Definition Encoding rules Examples 

A Mathematical 
consideration 

Consider the mathematical 
properties 

  Students know applying mean as 
a number for approximation. 

  Constant property can be shown 

B Didactical 
consideration 

Curriculum related; 
Studentcentered 
consideration 

Explorative, students can discov-
er mathematical concept them-
selves 

C Practical 
consideration 

Considerthe method/ 

Procedureoftheexperiment 

  Easy, direct   Studentcan fin-
doutvaluethemselves 

D Others Teacher-centered, envi-
ronmentfactors; 
classroom management 

  Visible 

  Teacher can easily manage the 
expected answer and time 
of teaching  

Disadvantages 
Cate-
gory Definition Encoding rules Examples 

A Mathematical 
consideration 

Consider the mathematical 
properties 

Student need to have the con-
ceptof slope of the best fitted line 
Line  may not  go through 
theorigin 

B Didactical 
consideration 

Curriculum related; 
Studentcentered 
consideration 

Students just stay at the level of 
manipulation but not geometrical-
ly understanding 

C Practical 
consideration 

Considerthe method/ 
Procedureofthe 
experiment 

  Difficult to measure; take 
long time to measure 

  Discrepancy in results 

D Other Teacher-centered, envi-
ronmentfactors; 
classroom management 

Answer is invisible; seems no 
fixed numerical value for π 

 

Q4. Student B claims that the ratio: “diameter to circumference” is the reciprocal of π and is 
also a constant. He questions that why we do not use this number instead. How will you 
explain? 
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Cate-
gory Definition Encoding rules Examples 

A Mathematical 
consideration 

Considerthemathematical 
properties 

π is not only related to circumfe-
rence but also area of the circle 
and volume of sphere. B Didactical 

consideration 
The circumference and
area formula are in linear 
form, which can be easily 
memorized by students 

Such a π can easily lead to the 
linear expression 2πr, or πr2; if 
we use diameter to circumfe-
rence for the ra t io  of  π  t hen  
we  shal l  haveirrationaldeno-
minators intheformula of circum-
ference and area 

C Practical 
consideration 

Considerthemethod/ 
Procedureofthe 
experiment; convenient to 
use “circumference to 
diameter” 

1 Easy to measure π, but not 
itsreciprocal. 

· First have circumference before 
we can find the diameter 
· It is more convenient to use π that 

is larger than 1. 
D Other It is only a convention 1 Easy to measure π, but not 

itsreciprocal.
 
Q5 Student B asks that the values are not exactly calculated and says: “It is not convincing 
that π is a constant. π may be 3.15, 3.16 or even 3.2 for a larger circle because my circles drawn 
are larger than those of student A’s ; it is not 3.1416,..., it is not a constant”. As a teacher, how 
will you response? 
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Cate-
gory Definition Encoding rules Examples 

A Mathematical 
consideration 

Manyscientif-
ic/mathematicsrulesandForm
ulacannotbeAppliedif π is 
not a 
constant 

· Diameter is also larger for 
larger circle 

· The circumference and the 
diameter of a circle increase 
correspondingly, simultaneously 

B Didactical 
consideration 

Use a direct method to 
convince student B; ask 
him/her to measure the 
length carefully and  
de m o n s t r a t e  t h a t  π  
remains the same value 
for larger circles 

Telling the students that it should be 
a constant; The proof of the 
constant nature of π will be 
learnt in higher level 

C Practical 
consideration 

Considerthemethod/ 
Procedureofthe 
experiment;useother 
methodsto measure 
again 

Measurementerror; orthere is 
another better methodto verify 
the constant nature of π 

D Other Manymathematician 
have calculate the value of 
π, 

π is a fixed number that has 
been verified long time ago 

 

Q6. Imagine you are going to teach classes of early secondary students, who have some basic 
knowledge of what have been discussed by the three students above, about the property of π, 
tell which method and why you will use it in your lesson? 
 

Methods Frequency Remarks / reasons 
Student A’s  A direct and easy method 
Student B’s  Taking the reciprocal afterward 
Student C’s  Learn the concept of linear relationship 

 

Q7. How would you tell that π is a constant besides these three trial methods employed by 
students above? 
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Cate-
gory Definition Encoding rules Examples 

A Mathematical 
consideration 

· Relationship between area 
and diameter/ radius; 

· Using similarity of circles 
– circles are similar 

· Approximate area of circle 
by polygons, then calcu-
late the value of π 

1. UseArea =and 
count the grids. 

B Didactical 
consideration 

Askstudentstoaccept by 
considering students’ abilities to 
un de r s t a n d  l a t e r  t he  
o t he r  advanced methods to 
verify the constant nature of π 

Ithasbeen calculated 
Manymathematicians 
Timeagothrough 
approximation method 

C Practical 
consideration 
and others 

The experiment of measure-
ments are just a verification; it 
is not worth to spend time to 
argue the constant nature 

Sincecircumferenceisa 
curve, diameter is a straight 
line, we have to take the 
approximation 

D Other Use other tools Using computer 
 


