DOI QR코드

DOI QR Code

AMP-activated protein kinase: An emerging target for ginseng

  • Jeong, Kyong Ju (Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Kyung Hee University) ;
  • Kim, Go Woon (Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Kyung Hee University) ;
  • Chung, Sung Hyun (Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Kyung Hee University)
  • Received : 2013.08.14
  • Accepted : 2013.11.19
  • Published : 2014.04.15

Abstract

The adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a key sensor of cellular energy. Once activated, it switches on catabolic pathways generating adenosine triphosphate (ATP), while switching off biosynthetic pathways consuming ATP. Pharmacological activation of AMPK by metformin holds a therapeutic potential to reverse metabolic abnormalities such as type 2 diabetes and nonalcoholic fatty liver disease. In addition, altered metabolism of tumor cells is widely recognized and AMPK is a potential target for cancer prevention and/or treatment. Panax ginseng is known to be useful for treatment and/or prevention of cancer and metabolic diseases including diabetes, hyperlipidemia, and obesity. In this review, we discuss the ginseng extracts and ginsenosides that activate AMPK, we clarify the various mechanisms by which they achieve this, and we discuss the evidence that shows that ginseng or ginsenosides might be useful in the treatment and/or prevention of metabolic diseases and cancer.

Keywords

References

  1. Beg ZH, Allmann DW, Gibson DM. Modulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity with cAMP and with protein fractions of rat liver cytosol. Biochem Biophys Res Commun 1973;54:1362-9. https://doi.org/10.1016/0006-291X(73)91137-6
  2. Carlson CA, Kim KH. Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation. J Biol Chem 1973;248:378-80.
  3. Stein SC, Woods A, Jones NA, Davison MD, Carling D. The regulation of AMPactivated protein kinase by phosphorylation. Biochem J 2000;345:437-43. https://doi.org/10.1042/0264-6021:3450437
  4. Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 2007;8:774-85. https://doi.org/10.1038/nrm2249
  5. Zhang BB, Zhou G, Li CAMPK. an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 2009;9:407-16. https://doi.org/10.1016/j.cmet.2009.03.012
  6. Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 2009;10:307-18. https://doi.org/10.1038/nrm2672
  7. Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003;115:577-90. https://doi.org/10.1016/S0092-8674(03)00929-2
  8. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008;30:214-26. https://doi.org/10.1016/j.molcel.2008.03.003
  9. Imamura K, Ogura T, Kishimoto A, Kaminishi M, Esumi H. Cell cycle regulation via p53 phosphorylation by a 50-AMP activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line. Biochem Biophys Res Commun 2001;287:562-7. https://doi.org/10.1006/bbrc.2001.5627
  10. Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Mäkelä TP, Alessi DR, Hardie DG. Complexes between the LKB1 tumor suppressor, STRAD alpha/ beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2003;2:28. https://doi.org/10.1186/1475-4924-2-28
  11. Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D, Schlattner U, Wallimann T, Carlson M, Carling D. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 2003;13:2004-8. https://doi.org/10.1016/j.cub.2003.10.031
  12. Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, Cantley LC. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A 2004;101:3329-35.
  13. Alessi DR, Sakamoto K, Bayascas JR. LKB1-dependent signaling pathways. Annu Rev Biochem 2006;75:137-63. https://doi.org/10.1146/annurev.biochem.75.103004.142702
  14. Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD. Metformin and reduced risk of cancer in diabetic patients. BMJ 2005;330:1304-5. https://doi.org/10.1136/bmj.38415.708634.F7
  15. Huang X, Wullschleger S, Shpiro N, McGuire VA, Sakamoto K, Woods YL, McBurnie W, Fleming S, Alessi DR. Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochem J 2008;412: 211-21. https://doi.org/10.1042/BJ20080557
  16. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006;444:337-42. https://doi.org/10.1038/nature05354
  17. Hwang JT, Park IJ, Shin JI, Lee YK, Lee SK, Baik HW, Ha J, Park OJ. Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem Biophys Res Commun 2005;338:694-9. https://doi.org/10.1016/j.bbrc.2005.09.195
  18. Lim HW, Lim HY, Wong KP. Uncoupling of oxidative phosphorylation by curcumin: implication of its cellular mechanism of action. Biochem Biophys Res Commun 2009;389:187-92. https://doi.org/10.1016/j.bbrc.2009.08.121
  19. Turner N, Li JY, Gosby A, To SW, Cheng Z, Miyoshi H, Taketo MM, Cooney GJ, Kraegen EW, James DE, et al. Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I: a mechanism for the action of berberine to activate AMP-activated protein kinase and improve insulin action. Diabetes 2008;57:1414-8. https://doi.org/10.2337/db07-1552
  20. Lin YC, Hung CM, Tsai JC, Lee JC, Chen YL, Wei CW, Kao JY, Way TD. Hispidulin potently inhibits human glioblastoma multiforme cells through activation of AMP-activated protein kinase (AMPK). J Agric Food Chem 2010;58:9511-7. https://doi.org/10.1021/jf1019533
  21. Quan HY, Kim SJ, Kim DY, Jo HK, Kim GW, Chung SH. Licochalcone A regulates hepatic lipid metabolism through activation of AMP-activated protein kinase. Fitoterapia 2013;86:208-16. https://doi.org/10.1016/j.fitote.2013.03.005
  22. Quan HY. Kim do Y, Kim SJ, Jo HK, Kim GW, Chung SH. Betulinic acid alleviates non-alcoholic fatty liver by inhibiting SREBP1 activity via the AMPK-mTORSREBP signaling pathway. Biochem Pharmacol 2013;85:1330-40. https://doi.org/10.1016/j.bcp.2013.02.007
  23. Kulaputana O, Thanakomsirichot S, Anomasiri W. Ginseng supplementation does not change lactate threshold and physical performances in physically active Thai men. J Med Assoc Thai 2007;90:1172-9.
  24. Bahrke M, Morgan W, Stagner A. Is ginseng an ergogenic aid? Int J Sport Nutr Metab 2009;19:298-322. https://doi.org/10.1123/ijsnem.19.3.298
  25. Jang DJ, Lee MS, Shin BC, Lee YC, Ernst E. Red ginseng for treating erectile dysfunction: a systematic review. Br J Clin Pharmacol 2008;66:444-50. https://doi.org/10.1111/j.1365-2125.2008.03236.x
  26. Choi YD, Park CW, Jang J, Kim SH, Jeon HY, Kim WG, Lee SJ, Chung WS. Effects of Korean ginseng berry extract on sexual function in men with erectile dysfunction: a multicenter, placebo-controlled, double-blind clinical study. Int J Impot Res 2013;25:45-50. https://doi.org/10.1038/ijir.2012.45
  27. Helms S. Cancer prevention and therapeutics: Panax ginseng. Altern Med Rev 2004;9:259-74.
  28. Choi J, Kim TH, Choi TY, Lee MS. Ginseng for health care: a systematic review of randomized controlled trials in Korean literature. PLoS One 2013;8: e59978. https://doi.org/10.1371/journal.pone.0059978
  29. Kim S, Shin BC, Lee MS, Lee H, Ernst E. Red ginseng for type 2 diabetes mellitus: a systematic review of randomized controlled trials. Chin J Integr Med 2011;17:937-44. https://doi.org/10.1007/s11655-011-0937-2
  30. Mucalo I, Rahelic D, Jovanovski E, Bozikov V, Romic Z, Vuksan V. Effect of American ginseng (Panax quinquefolius L.) on glycemic control in type 2 diabetes. Coll Antropol 2012;36:1435-40.
  31. Yuan HD, Kim JT, Kim SH, Chung SH. Ginseng and diabetes: the evidences from in vitro, animal and human studies. J Ginseng Res 2012;36:27-39. https://doi.org/10.5142/jgr.2012.36.1.27
  32. Rhee MY, Kim YS, Bae JH, Nah DY, Kim YK, Lee MM, Kim HY. Effect of Korean red ginseng on arterial stiffness in subjects with hypertension. J Altern Complement Med 2011;17:45-9. https://doi.org/10.1089/acm.2010.0065
  33. Stavro PM, Woo M, Heim TF, Leiter LA, Vuksan V. North American ginseng exerts a neutral effect on blood pressure in individuals with hypertension. Hypertension 2005;46:406-11. https://doi.org/10.1161/01.HYP.0000173424.77483.1e
  34. Hawley SA, Ross FA, Chevtzoff C, Green KA, Evans A, Fogarty S, Towler MC, Brown LJ, Ogunbayo OA, Evans AM, Hardie DG. Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab 2010;11:554-65. https://doi.org/10.1016/j.cmet.2010.04.001
  35. Scott JW, Norman DG, Hawley SA, Kontogiannis L, Hardie DG. Protein kinase substrate recognition studied using the recombinant catalytic domain of AMP-activated protein kinase and a model substrate. J Mol Biol 2002;317: 309-23. https://doi.org/10.1006/jmbi.2001.5316
  36. Frøsig C, Pehmøller C, Birk JB, Richter EA, Wojtaszewski JF. Exercise-induced TBC1D1 Ser237 phosphorylation and 14-3-3 protein binding capacity in human skeletal muscle. J Physiol 2010;588:4539-48. https://doi.org/10.1113/jphysiol.2010.194811
  37. Lee HJ, Lee YH, Park SK, Kang ES, Kim HJ, Lee YC, Choi CS, Park SE, Ahn CW, Cha BS, et al. Korean red ginseng (Panax ginseng) improves insulin sensitivity and attenuates the development of diabetes in Otsuka Long-Evans Tokushima fatty rats. Metabolism 2009;58:1170-7. https://doi.org/10.1016/j.metabol.2009.03.015
  38. Habets DD, Coumans WA, El Hasnaoui M, Zarrinpashneh E, Bertrand L, Viollet B, Kiens B, Jensen TE, Richter EA, Bonen A, et al. Crucial role for LKB1 to AMPKalpha2 axis in the regulation of CD36-mediated long-chain fatty acid uptake into cardiomyocytes. Biochim Biophys Acta 2009;1791:212-9. https://doi.org/10.1016/j.bbalip.2008.12.009
  39. Kim DY, Yuan HD, Chung IK, Chung SH. Compound K, intestinal metabolite of ginsenoside, attenuates hepatic lipid accumulation via AMPK activation in human hepatoma cells. J Agric Food Chem 2009;57:1532-7. https://doi.org/10.1021/jf802867b
  40. Merrill GF, Kurth EJ, Hardie DG, Winder WW. AICA riboside increases AMPactivated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol 1997;273:1107-12.
  41. Shen L, Xiong Y, Wang DQ, Howles P, Basford JE, Wang J, Xiong YQ, Hui DY, Woods SC, Liu M. Ginsenoside Rb1 reduces fatty liver by activating AMPactivated protein kinase in obese rats. J Lipid Res 2013;54:1430-8. https://doi.org/10.1194/jlr.M035907
  42. Davies SP, Carling D, Munday MR, Hardie DG. Diurnal rhythm of phosphorylation of rat liver acetyl-CoA carboxylase by the AMP-activated protein kinase, demonstrated using freeze-clamping. Effects of high fat diets. Eur J Biochem 1992;203:615-23. https://doi.org/10.1111/j.1432-1033.1992.tb16591.x
  43. Muoio DM, Seefeld K, Witters LA, Coleman RA. AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target. Biochem J 1999;338:783-91. https://doi.org/10.1042/0264-6021:3380783
  44. Yuan HD, Kim SJ, Chung SH. Beneficial effects of IH-901 on glucose and lipid metabolisms via activating adenosine monophosphate-activated protein kinase and phosphatidylinositol-3 kinase pathways. Metabolism 2011;60: 43-51. https://doi.org/10.1016/j.metabol.2009.12.024
  45. Clarke PR, Hardie DG. Regulation of HMG-CoA reductase: identification of the site phosphorylated by the AMP-activated protein kinase in vitro and in intact rat liver. EMBO J 1990;9:2439-46.
  46. Lee S, Lee MS, Kim CT, Kim IH, Kim Y. Ginsenoside Rg3 Reduces lipid accumulation with AMP-activated protein kinase (AMPK) activation in HepG2 cells. Int J Mol Sci 2012;13:5729-39. https://doi.org/10.3390/ijms13055729
  47. Koo SH, Flechner L, Qi L, Zhang X, Screaton RA, Jeffries S, Hedrick S, Xu W, Boussouar F, Brindle P, et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 2005;437:1109-11. https://doi.org/10.1038/nature03967
  48. Yuan HD, Kim DY, Quan HY, Kim SJ, Jung MS, Chung SH. Ginsenoside Rg2 induces orphan nuclear receptor SHP gene expression and inactivates GSK3b via AMP-activated protein kinase to inhibit hepatic glucose production in HepG2 cells. Chem Biol Interact 2012;195:35-42. https://doi.org/10.1016/j.cbi.2011.10.006
  49. Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, Park O, Luo Z, Lefai E, Shyy JY, et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 2011;13:376-88. https://doi.org/10.1016/j.cmet.2011.03.009
  50. Quan HY, Yuan HD, Jung MS, Ko SK, Park YG, Chung SH. Ginsenoside Re lowers blood glucose and lipid levels via activation of AMP-activated protein kinase in HepG2 cells and high-fat diet fed mice. Int J Mol Med 2012;29:73-80.
  51. Kim DY, Park MW, Yuan HD, Lee HJ, Kim SH, Chung SH. Compound K induces apoptosis via CAMK-IV/AMPK pathways in HT-29 colon cancer cells. J Agric Food Chem 2009;57:10573-8. https://doi.org/10.1021/jf902700h
  52. Yuan HD, Quan HY, Zhang Y, Kim SH, Chung SH. 20(S)-Ginsenoside Rg3- induced apoptosis in HT-29 colon cancer cells is associated with AMPK signaling pathway. Mol Med Rep 2010;3:825-31.
  53. Kim AD, Kang KA, Zhang R, Lim CM, Kim HS, Kim DH, Jeon YJ, Lee CH, Park J, Chang WY, et al. Ginseng saponin metabolite induces apoptosis in MCF-7 breast cancer cells through the modulation of AMP-activated protein kinase. Environ Toxicol Pharmacol 2010;30:134-40. https://doi.org/10.1016/j.etap.2010.04.008
  54. Hwang JA, Hwang MK, Jang Y, Lee EJ, Kim JE, Oh MH, Shin DJ, Lim S, Go Ji, Oh U, et al. 20-O-b-d-glucopyranosyl-20(S)-protopanaxadiol, a metabolite of ginseng, inhibits colon cancer growth by targeting TRPC channel-mediated calcium influx. J Nutr Biochem 2013;24:1096-104. https://doi.org/10.1016/j.jnutbio.2012.08.008
  55. Kim SJ, Yuan HD, Chung SH. Ginsenoside Rg1 suppresses hepatic glucose production via AMP-activated protein kinase in HepG2 cells. Biol Pharm Bull 2010;33:325-8. https://doi.org/10.1248/bpb.33.325
  56. Lee KT, Jung TW, Lee HJ, Kim SG, Shin YS, Whang WK. The antidiabetic effect of ginsenoside Rb2 via activation of AMPK. Arch Pharm Res 2011;34: 1201-8. https://doi.org/10.1007/s12272-011-0719-6
  57. Lee MS, Hwang JT, Kim SH, Yoon S, Kim MS, Yang HJ, Kwon DY. Ginsenoside Rc, an active component of Panax ginseng, stimulates glucose uptake in C2C12 myotubes through an AMPK-dependent mechanism. J Ethnopharmacol 2010;127:771-6. https://doi.org/10.1016/j.jep.2009.11.022
  58. Hwang JT, Lee MS, Kim HJ, Sung MJ, Kim HY, Kim MS, Kwon DY. Antiobesity effect of ginsenoside Rg3 involves the AMPK and PPAR-g signal pathways. Phytother Res 2009;23:262-6. https://doi.org/10.1002/ptr.2606
  59. Park MW, Ha J, Chung SH. 20(S)-ginsenoside Rg3 enhances glucose-stimulated insulin secretion and activates AMPK. Biol Pharm Bull 2008;31:748-51. https://doi.org/10.1248/bpb.31.748
  60. Huang YC, Lin CY, Huang SF, Lin HC, Chang WL, Chang TC. Effect and mechanism of ginsenosides CK and Rg1 on stimulation of glucose uptake in 3T3-L1 adipocytes. J Agric Food Chem 2010;58:6039-47. https://doi.org/10.1021/jf9034755
  61. Lee HM, Lee OH, Kim KJ, Lee BY. Ginsenoside Rg1 promotes glucose uptake through activated AMPK pathway in insulin-resistant muscle cells. Phytother Res 2012;26:1017-22. https://doi.org/10.1002/ptr.3686
  62. Lim S, Yoon JW, Choi SH, Cho BJ, Kim JT, Chang HS, Park HS, Park KS, Lee HK, Kim YB, et al. Effect of ginsam, a vinegar extract from Panax ginseng, on body weight and glucose homeostasis in an obese insulin-resistant rat model. Metabolism 2009;58:8-15. https://doi.org/10.1016/j.metabol.2008.07.027

Cited by

  1. Berberine, an Epiphany Against Cancer vol.19, pp.8, 2014, https://doi.org/10.3390/molecules190812349
  2. Ginsenoside 20(S)-Rg3 Targets HIF-1α to Block Hypoxia-Induced Epithelial-Mesenchymal Transition in Ovarian Cancer Cells vol.9, pp.9, 2014, https://doi.org/10.1371/journal.pone.0103887
  3. A review on the medicinal potential of Panax ginseng saponins in diabetes mellitus vol.5, pp.59, 2014, https://doi.org/10.1039/c5ra05864c
  4. The Role of Lipin-1 in the Pathogenesis of Alcoholic Fatty Liver vol.50, pp.2, 2014, https://doi.org/10.1093/alcalc/agu102
  5. Adenosine Monophosphate–Activated Kinase and Its Key Role in Catabolism: Structure, Regulation, Biological Activity, and Pharmacological Activation vol.87, pp.3, 2015, https://doi.org/10.1124/mol.114.095810
  6. Supplementation of Chitosan Alleviates High-Fat Diet-Enhanced Lipogenesis in Rats via Adenosine Monophosphate (AMP)-Activated Protein Kinase Activation and Inhibition of Lipogenesis-Associated Genes vol.63, pp.11, 2015, https://doi.org/10.1021/acs.jafc.5b00198
  7. Protective Effects of Korean Red Ginseng against Alcohol-induced Hepatosteatosis vol.25, pp.3, 2014, https://doi.org/10.5352/jls.2015.25.3.317
  8. Rh2E2, a novel metabolic suppressor, specifically inhibits energy-based metabolism of tumor cells vol.7, pp.9, 2014, https://doi.org/10.18632/oncotarget.6934
  9. AMPK activators: mechanisms of action and physiological activities vol.48, pp.4, 2016, https://doi.org/10.1038/emm.2016.16
  10. Quercetin, a Lead Compound against Type 2 Diabetes Ameliorates Glucose Uptake via AMPK Pathway in Skeletal Muscle Cell Line vol.8, pp.None, 2014, https://doi.org/10.3389/fphar.2017.00336
  11. Changbai Mountain Ginseng ( Panax ginseng C.A. Mey) Extract Supplementation Improves Exercise Performance and Energy Utilization and Decreases Fatigue-Associated Parameters in Mice vol.22, pp.2, 2017, https://doi.org/10.3390/molecules22020237
  12. Ginsenoside Rb1 inhibits hypoxia-induced epithelial-mesenchymal transition in ovarian cancer cells by regulating microRNA-25 vol.14, pp.4, 2014, https://doi.org/10.3892/etm.2017.4889
  13. Lingguizhugan decoction improves non-alcoholic fatty liver disease by altering insulin resistance and lipid metabolism related genes: a whole trancriptome study by RNA-Seq vol.8, pp.47, 2014, https://doi.org/10.18632/oncotarget.19734
  14. Towards natural mimetics of metformin and rapamycin vol.9, pp.11, 2014, https://doi.org/10.18632/aging.101319
  15. Effect of ginseng therapy on diabetes and its chronic complications: lessons learned vol.14, pp.4, 2014, https://doi.org/10.1515/jcim-2016-0166
  16. Effect of ginseng therapy on diabetes and its chronic complications: lessons learned vol.14, pp.4, 2014, https://doi.org/10.1515/jcim-2016-0166
  17. Antiobesity Effects of Ginsenoside Rg1 on 3T3-L1 Preadipocytes and High Fat Diet-Induced Obese Mice Mediated by AMPK vol.10, pp.7, 2014, https://doi.org/10.3390/nu10070830
  18. A discrimination study of Asia ginseng and America ginseng by a comparison of ginsenosides, oligosaccharides and amino acids using a UPLC-MS method vol.41, pp.13, 2014, https://doi.org/10.1080/10826076.2018.1506933
  19. Therapeutic potential of Panax ginseng and its constituents, ginsenosides and gintonin, in neurological and neurodegenerative disorders: a patent review vol.29, pp.1, 2014, https://doi.org/10.1080/13543776.2019.1556258
  20. Enhanced Intestinal Permeability and Plasma Concentration of Metformin in Rats by the Repeated Administration of Red Ginseng Extract vol.11, pp.4, 2014, https://doi.org/10.3390/pharmaceutics11040189
  21. Polyphenols targeting diabetes via the AMP-activated protein kinase pathway; future approach to drug discovery vol.56, pp.7, 2014, https://doi.org/10.1080/10408363.2019.1648376
  22. How Does Ginsenoside Rh2 Mitigate Adipogenesis in Cultured Cells and Obese Mice? vol.25, pp.10, 2014, https://doi.org/10.3390/molecules25102412
  23. The Advances on the Protective Effects of Ginsenosides on Myocardial Ischemia and Ischemia-Reperfusion Injury vol.20, pp.16, 2020, https://doi.org/10.2174/1389557520666200619115444
  24. Inhibition of Angiotensin-I Converting Enzyme by Ginsenosides: Structure-Activity Relationships and Inhibitory Mechanism vol.69, pp.21, 2014, https://doi.org/10.1021/acs.jafc.1c01231
  25. Korean Red Ginseng Improves Astrocytic Mitochondrial Function by Upregulating HO-1-Mediated AMPKα-PGC-1α-ERRα Circuit after Traumatic Brain Injury vol.22, pp.23, 2014, https://doi.org/10.3390/ijms222313081