DOI http://dx.doi.org/10.3795/KSME-B.2014.38.5.399

ISSN 1226-4881(Print) 2288-5234(Online)

압력면윙렛/흡입면스퀼러형 터빈 동익 팁누설영역에서의 3차원유동 및 압력손실

천주홍*·강동범*·이상우** * 금오공과대학교 기계공학과

Three-Dimensional Flow and Aerodynamic Loss in the Tip-Leakage Flow Region of a Turbine Blade with Pressure-Side Winglet and Suction-Side Squealer

Joo Hong Cheon,^{*} Dong Bum Kang^{*} and Sang Woo Lee^{*†} * Dept. of Mechanical Engineering, Kumoh Nat'l Institute of Technology

(Received September 9, 2013 ; Revised March 7, 2014 ; Accepted March 12, 2014)

Key Words: Gas Turbine(가스터빈), Turbine Cascade(터빈익렬), Tip-Leakage Flow(팁누설유동), Winglet(익 단소익), Squealer(스퀼러), Aerodynamic Loss(압력손실)

초록: 본 연구에서는 압력면윙렛/흡입면스퀼러형 터빈 동익 팁에 대하여 익렬 하류에서 3차원 유동 및 압력손실을 측정하였다. 팁간극비 *h/s* = 1.36%에 대하여, 흡입면스퀼러의 높이는 *h_s/s* = 3.75%로 일정하 게 유지하고, 압력면윙렛의 폭은 *w/p* = 2.64%, 5.28%, 7.92%, 10.55% 등으로 변화시키면서 실험을 수행 하였다. 그 결과, 본 연구의 팁은 평면팁 대비 통로와류 영역에서 압력손실의 저감 효과가 매우 뛰어났 지만, 팁누설와류 영역에서는 오히려 압력손실을 크게 증가시켰다. 본 연구의 질량평균 압력손실은 평 면팁에 비해 크게 낮았지만, 전면스퀼러팁보다는 더 크게 나타났다. 압력면윙렛의 폭이 증가할수록 질 량평균 압력손실은 감소하는 경향을 보였다.

Abstract: Three-dimensional flow and aerodynamic loss in the tip-leakage flow region of a turbine blade equipped with both a pressure-side winglet and a suction-side squealer have been measured for the tip gap-to-span ratio of h/s = 1.36%. The suction-side squealer has a fixed height-to-span ratio of $h_s/s = 3.75\%$ and the pressure-side winglet has width-to-pitch ratios of w/p = 2.64%, 5.28%, 7.92% and 10.55%. The results are compared with those for a plane tip and for a cavity squealer tip of $h_{ps}/s = 3.75\%$. The present tip delivers lower loss in the passage vortex region but higher loss in the tip-leakage vortex region, compared to the plane tip. With increasing w/p, its mass-averaged loss tends to be reduced. Regardless of w/p, the present tip provides lower loss than the plane tip but higher loss than the cavity squealer tip.

- 기호설명 -	- $C_{pt,z}$: 피치방향 질량평균 전압력손실계수, 식 (2)
b : 축방향 코드 c : 코드 cc : 캠버(camber)의 길이 C _{pt} : 전압력손실계수, 식 (1) \overline{C}_{pt} : 질량평균 전압력손실계수, 식 (3)	h : 팁간극 높이 hps : 전면스퀼러팁의 높이 hs : 흡입면스퀼러의 높이 p : 피치 Pt : 전압 Pt0 : 익렬 상류에서 측정한 기준 전압
 Corresponding Author, swlee@kumoh.ac.kr © 2014 The Korean Society of Mechanical Engineers 	<i>s</i> : 스팬 <i>U,V,W</i> : 3차원 평균속도

w	: 압력면윙렛의 폭
xyz	: 익렬좌표계, Fig. 2
$x_{\rm c}$: 캠버방향 좌표, Fig. 2
y_m	: 측정위치에서 피치방향 좌표, Fig. 2
그리스	└문자

β	: 유동의 요각 (yaw angle)
\overline{eta}	: 질량평균 유동요각
$\overline{\beta}_z$: 피치방향 질량평균 유동 요각
ν	: 밀도
ρ	: 밀도

1. 서 론

가스터빈 엔진에서 회전하는 터빈 동익의 팁 (tip)과 정지된 케이싱(casing) 사이에는 팁간극(tip gap)이 존재한다. 이 팁간극을 통하여 익형의 압 력면 쪽에서 흡입면 쪽으로 강한 누설유동이 불 가피하게 발생한다. 이 팁누설유동은 팁간극을 빠져나온 뒤, 터빈 통로 유동과 상호작용하여 팁 누설와류(tip leakage vortex)로 발달된다. 이와 같 은 팁 근처 3차원 유동은 압력손실을 증가시켜 터빈의 효율을 떨어뜨린다.

Fig. 1은 평면팁(plane tip) 팁간극 근처에서의 복 잡한 유동을 정성적으로 표현한 유동모델⁽¹⁾이다. 익 형 압력면을 따라 케이싱 쪽으로 이동하는 유동은 Fig. 1(b)에서와 같이 부착선(attachment line)을 기준 으로 크게 두 부류로 나뉜다. 부착선과 압력면 사이 의 유동은 팁간극 내부로 진입하여 재부착 (re-attachment) 과정을 거친 뒤 흡입면 쪽으로 이동 하는데 이 영역을 누설유동 영역(leakage flow zone) 이라고 한다. 이 누설유동은 팁간극을 벗어나 인접 익형통로 내부 깊숙이 침투하는데, 이 침투한계가 누설유동박리선(leakage flow separation line)이다. 이 와는 달리, 부착선 좌측의 흐름은 익형 통로를 가로 질러 인접 흡입면 쪽으로 이동한 뒤 케이싱 면으로 부터 박리되면서 통로와류(passage vortex)로 편입되 는데, 이 박리 궤적이 통로유동박리선(passage flow separation line)이다. 이 부착선과 통로유동박리선 사 이에는 통로유동만이 존재하며, 이 영역은 통로유동 영역(passage flow zone)이라고 불린다. Fig. 1(a)에 표시된 바와 같이, 익형의 앞전(leading edge)과 압력 면 팁모서리에는 유입유동이 존재하고 나머지 흡입 면 팁 모서리에는 유출유동이 존재한다. 익형

(a) Top view

(b) Cross-sectional view ($x_c/c_c = 0.75$)

선단 모서리에서의 박리/재부착 유동은 한쌍의 팁 간극와류(tip gap vortex)를 발생시키고, 압력면 팁모 서리를 따라서 발생하는 박리/재부착으로 인하여 박 리버블(separation bubble)이 형성된다.

지금까지 평면팁(plane tip)의 팁누설 유동특성 및 압력손실에 대하여 많은 연구⁽²⁻⁴⁾가 진행되었 고, 팁 표면에 울타리 형태의 전면 스퀼러에 둘 러싸인 함몰부가 존재하는 전면스퀼러팁(cavity squealer tip)에 대한 연구⁽⁵⁻⁸⁾도 다수 존재한다. 터 빈 팁에 윙렛이 설치된 동익에 대한 연구는 O'Dowd 등⁽⁹⁾과 Lee 등⁽¹⁾에 의해 수행된 바 있다.

본 연구에서는 Fig. 2와 같이 평면팁 표면에 흡 입면 부분스퀼러와 압력면 부분윙렛(winglet)이 설 치된 팁 형상에 대해 연구를 수행하고자 한다. 그림에서 알 수 있듯이 흡입면스퀼러는 익형의 기하학적 정체점으로부터 끝단(trailing edge)까지 의 영역에 설치되어 있고, 윙렛은 선단 및 압력 면 모서리를 따라 익형 통로 쪽으로 돌출되어 있 다. 본 실험에서는 윙렛의 폭(w)을 변화시키면서

Fig. 2 Tested tip geometry

Fig. 3 Overall view of turbine cascade wind tunnel

Fig. 4 Details of cascade

터빈 익렬 하류에서의 3차원 유동 및 압력손실을 측정하고, 그 결과를 평면팁과 전면스퀼러팁 결과 와 비교하여 공기역학적 성능을 평가하고자 한다. Fig. 2와 같은 팁 형상에 대한 압력손실 측정 연 구는 현재까지 이루어지지 않았지만, Papa 등⁽¹⁰⁾이 유사한 형상에 대하여 팁표면 열전달계수 측정 실험을 수행한 바 있다.

2. 실 험

2.1 익렬풍동

Fig. 3에서와 같이 익렬풍동은 크게 토출형 풍 동, 입구덕트, 터빈 익렬, 출구덕트 등으로 구성 된다. 토출형 풍동은 최대 40m/s까지 출구 유속 의 조절이 가능하다. 이 개방형 풍동을 통과한 균일 유동은 단면이 420mm × 320mm인 입구덕트 로 유입된다. 이것의 입구 상하 벽에는 트립와이 어/사포가 부착되어 있어서, 상하 벽 유동이 난류 경계층으로 발달된다. 입구덕트 하류에는 6개의 선형 익형으로 구성된 터빈 익렬(cascade)이 설치 되어 있다. 이것은 산업용 가스터빈의 터빈 제 1 단 동익 프로파일 근거로 large-scale로 제작되었 다.⁽⁵⁾ 익렬의 축방향코드 (*b*), 코드(*c*), 피치(*p*), 스 팬(*s*) 등은 각각 196.0mm, 217.8mm, 151.6mm, 320.0mm 등이고, 그 선회각은 119도이다.

터빈 익렬의 6개의 익형 중 #2 - #5 익형은 아랫 판에 뚫려 있는 익형 단면 형상의 홈 내부로 삽입 되어 볼트로 아랫벽에만 고정되고, 나머지 #1과 #6 은 그 상하벽 모두에 볼트로 고정된다. 따라서 팁 간극은 익렬 상단에 존재하게 되며, 삽입 깊이를 조절하면 팁간극 높이(h)를 바꿀 수 있다. 본 연구 에서는 Fig. 4와 같은 좌표계 xyz를 도입하였고, 측 정위치에서 ym 좌표를 추가로 정의하였다.

2.2 실험장치 및 측정방법

본 연구에서는 개인용컴퓨터로 전체 측정시스 템을 온라인화 하였으며, 이를 위해 A-D변환기 (NI, PCI-6036E)와 DI/O보드(NI, PCI-6503)가 컴퓨 터에 내장되어 있다. 압력변환기(MKS, Type 120AD-00010-R-EB)에 의해 변환된 압력신호는 16비트 A-D변환기를 통해 컴퓨터로 전달된다. 본 연구에서 사용한 자동이송장치는 직선운동 이송 축, 스테핑모터, 스테핑모터 드라이버 등으로 구 성되어 있다. 이 이송장치는 DI/O보드로부터 공 급되는 펄스입력을 통해서 제어된다.

3차원유동 및 압력손실을 측정하기 위해 Fig. 4 와 같이 지지대 형태가 직선인 2단 원추형 5공프 로우브를 사용하였다. 이 5공프로우브는 미국 United Sensors 사에 특별한 사양으로 주문, 제작 되었다. 이 5공프로우브의 선단 직경은 3.2mm이 고, 프로우브 지지대는 6.4mm로 보강되어 있다. 5공프로우브는 x/b = 1.2인 익렬 하류에 익렬의 유출각(blade outlet angle)과 평행하게 배치된다. 본 실험에서는 프로우브고정법(non-nulling method) 을 적용하여 5공프로우브를 보정하였다.(11) 5공프로 우브의 보정에는 분해능이 0.2도인 2축회전장치를 사용하였고, 보정실험은 피치각과 요각이 각각 -40 도에서 40도 사이에서 5도 간격으로 이루어졌다. 5 공프로우브의 5개의 압력을 순차적으로 측정하기 위하여 압력스캐너(Furness Controls, FC091-MKII)를 사용하였고, 이 압력스캐너도 DI/O보드를 이용하여 제어하였다.

2.3 실험범위

자유유동속도를 15m/s로 고정하고 실험을 수행 하였고, 이 입구 자유유동속도와 코드길이를 기 준으로 한 Reynolds 수(Re= $U_{\infty}c/\nu$)는 2.09×10⁵이 었다. 이때 입구 자유유동 난류강도는 0.3%로 측 정되었다. 익렬입구 0.23c 상류에서 측정된 경계 층의 배제두께, 운동량두께는 각각 5.2mm, 4.0mm 등이었다. 이 값들은 스팬의 1.6%와 1.3%이었으 며, 경계층 형상계수는 1.3으로 대표적인 평판 위 난류경계층에 해당되는 수치이다. 3차원유동의 측정은 익렬 하류인 x/b = 1.2에서 이루어졌고, 스팬방향으로는 미드스팬(z/s = 0.5)에서 케이싱 (z/s = 1.0) 사이에서 측정되었다.

본 실험에서는 팁간극높이의 비를 *h/s* = 1.36% 로 고정하였고, 전면스퀼러팁의 최적 스퀼러높이 를 참조하여⁽⁵⁾ Fig. 2의 흡입면스퀼러 높이를 *h*_s/s = 3.75%로 고정하였다. 이와는 달리, Fig. 2의 윙 렛 폭은 4mm, 8mm, 12mm, 16mm 등 4 경우(*w/p* = 2.64%, 5.28%, 7.92%, 10.55%)에 대해 실험을 수행하였다. 이때 스퀼러와 윙렛의 두께는 스팬 의 1.25%로 고정하였다. 입구 자유유동의 균일성 은 자유유동 속도의 1.0% 이내이며, 5공프로우브 의 이송오차는 ±0.05 mm 이내이다. Abernethy 등 ⁽¹²⁾의 방법을 적용한 오차해석 결과, 피치각, 요 각, 정압, 전압의 측정오차(uncertainty interval)은

Fig. 5 Vector plots at x/b = 1.2 for h/s = 1.36%

각각 ±0.75°, ±0.94°, 자유유동 동압의 ±0.72%, 자 유유동 동압의 ±1.04% 등으로 나타났다.

3. 결과 및 검토

3.1 3차원 유동장

일반적으로 팁간극이 없다면 터빈 통로 하류에 는 반시계방향으로 회전하는 통로와류(passage vortex)만 존재한다. 이 통로와류는 익형 앞전 끝벽 (endwall) 근처에서 생성된 말발굽와류(horseshoe Vortex)의 압력면다리(pressure-side leg)가 발달하여 형성된 것으로 알려져 있으며, 터빈 통로 내부에 서 발생하는 가장 강한 와류이다.

Fig. 5는 측정평면 즉 x/b = 1.2에서 2차유동 속 도벡터를 그린 것이다. 이 속도벡터는 각 측정위 치에서의 y- 및 z-축 유속을 미드스팬의 값으로 뺀 후 그린 것이다. w/p에 관계없이 반시계방향의 넓은 영역에 걸쳐 통로와류가 관찰되며, 통로와류 영역과 케이싱 사이에 시계방향으로 회전하는 벽 제트(wall jet) 형태의 강력한 팁누설와류가 존재한 다. 이 팁누설와류는 w/p가 증가할수록 강해지고, 그 범위도 피치방향으로 크게 확대되었다. 그러나 이 팁누설와류는 스팬방향으로는 케이싱 근처 0.9 < z/s < 1.0에서 국한되어 존재한다.

본 연구의 3차원 유속 측정 데이터를 근거로 x-축방향와도(x-directional vorticity) Ω_x 를 구하고, 그 중 팁간극와류 영역(음의 와도 영역)에서의 평 균와도 $\overline{\Omega}_{x,TLV}$ 를 계산한 결과, w/p가 증가함에 따라 $\overline{\Omega}_{x,TLV}$ 의 절대값이 증가하는 경향을 보여 주었다. 이 데이타는 팁간극와류의 강화를 입증 해 준다.

윙렛 폭이 증가할수록 팁누설유동이 더 강해지 는 이유는 넓어진 앞전 근처 윙렛 팁간극 입구를 통해 Fig. 2에서 점선 화살표로 표시한 바와 같이 유입유동이 증가하기 때문일 것으로 추측된다.

3.2 전압력손실계수의 정의

압력손실은 전압력의 감소 정도를 의미하며, 다음과 같이 전압력손실계수(total-pressure loss coefficient)의 형태로 정의된다.

$$C_{pt} = \frac{P_{t0} - P_t}{\frac{1}{2}\rho U_{\infty}^2}$$
(1)

1.0 0.9 0.8 N 0.7 0.6 0.5 -0.2 0.0 0.2 0.4 0.6 0.8 1'0 y_m/p (a) w/p = 2.64%1.0 0.9 0.8-S/2 0.7 0.6 0.0 0.2 0.4 0.6 0.8 1.0 y_m/p (b) w/p = 5.28%1.0 (1.6) 0.9 _ی0.8 Ñ 0.7 0.6 0.4 0.6 0.8 1.0 0.0 0.2 y_m/p (c) w/p = 7.92%1.0 15 0.9 0.8-กั 0.7[.] 0.6-0.5| -0.2 0.4 0.6 0.8 0.0 0.2 1.0 y_m/p (d) w/p = 10.55%

Fig. 6 Contours of C_{Pt} at x/b = 1.2 for h/s = 1.36%

이 식에서 Pto는 입구 덕트에서의 기준 전압력을 나타내고, Pt는 측정 위치에서 얻은 국소 전압력 을 나타낸다. 스팬방향 즉 z-축 방향으로의 압력 손실 분포를 이해하기 위해서는 피치방향으로 질 량 평균된 전압력손실계수가 매우 유용하다. 이 피 치방향 질량평균 전압력손실계수(pitchwise massaveraged total-pressure loss coefficient)는 다음과 같 이 정의된다.

$$\overline{C}_{pt,z} = \frac{\int_{0}^{p} \rho U C_{pt} dy_{m}}{\int_{0}^{p} \rho U dy_{m}}$$
(2)

측정 영역 전체에 걸쳐 질량평균된 전압력손실계수는 다음의 식으로 정의될 수 있다.

$$\overline{C}_{pt} = \frac{\int_{0}^{p} \int_{0.5s}^{s} \rho U C_{pt} dz dy_{m}}{\int_{0}^{p} \int_{0.5s}^{s} \rho U dz dy_{m}}$$
(3)

3.3 전압력손실계수

동익 팁 하류에서의 압력손실 분포는 크게 미 드스팬 영역, 통로와류 영역, 팁누설와류 영역 등 세 영역으로 구분된다.⁽⁶⁾ 미드스팬 근처에서의 손 실은 주로 익형에서의 경계층의 성장과 뒷전 박 리로 인해 발생하는 형상손실(profile loss)이다. 일 반적으로 평면팁이나 전면스퀼러팁의 경우 통로 와류에 의한 최대 국소 압력손실계수가 팁누설와 류 영역보다는 작지만 그 면적은 훨씬 넓다.⁽⁶⁾

Fig. 6은 식 (1)에서 정의된 국소 전압력손실계 수(*C_{µt}*)의 분포를 나타낸다. 윙렛의 폭이 가장 작 은 Fig. 4(a) (*w/p* = 2.64%)에서도 팁누설와류에 해당하는 압력손실 영역이 비교적 넓고, 통로와 류 영역이 비교적 좁다. 이 경향은 *w/p*가 증가할 수록 더욱 두드러지게 나타나며, *w/p* = 10.55%에 서는 팁누설와류에 의한 압력손실이 피치 방향 전체에 걸쳐 나타나고, 통로와류 영역이 가장 좁 게 관찰된다.

Fig. 7은 식 (2)와 같이 정의된 피치방향 질량 평균 전압력손실계수 $\overline{C}_{pt,z}$ 의 프로파일을 나타낸 다. 먼저 미드스팬에서의 결과를 살펴보면, 윙렛 의 폭에 관계없이 $\overline{C}_{pt,z}$ 는 대략 2.0으로 평면팁과 전면스퀼러팁의 값과 거의 동일하게 나타났다. 이 사실은 팁형상 변화의 효과가 미드스팬에서는

Fig. 7 Profiles of $C_{Pt,z}$ at x/b = 1.2 for h/s = 1.36%

거의 무시할 수 있음을 의미한다. 0.5 < z/s < 0.7 에서는 w/p에 따른 C_{pt,z}의 변화가 매우 작은 반 면, z/s > 0.7에서는 $\overline{C}_{vt,z}$ 가 w/p에 따라 크게 다른 값을 갖는다. 0.7 < z/s < 0.9에서는 w/p가 증가하 면 $\overline{C}_{pt,z}$ 는 감소하는 경향을 보여 준다. 이 영역에 서는 w/p가 2.64%에서 5.28%까지 증가할 때 C_{nt.} 가 비교적 크게 감소하지만, w/p가 5.28% 이상이 면 그 변화 폭이 비교적 작았다. 특히 팁누설영 역에 해당하는 z/s > 0.9에서는 w/p가 증가함에 따라 $\overline{C}_{nt,z}$ 가 비교적 큰 폭으로 증가하였다. 본 연구의 C_{nt}를 평면팁과 전면스퀼러팁의 결 과와 비교해 보면, 0.5 < z/s < 0.7에서는 본 연구 의 결과들 모두 평면팁과 전면스퀼러팁 값보다 소폭이나마 작게 나타났다. 0.7 < z/s < 0.9에서는 본 연구의 $\overline{C}_{m,z}$ 는 평면팁 결과에 비해 매우 작을 뿐만 아니라, w/p = 2.64%를 제외하면 전면스퀼 러팁의 결과보다 더 작았다. z/s > 0.9에서는 본 연구의 $\overline{C}_{pt,z}$ 가 전면스퀼러팁 뿐만 아니라 평면팁 결과보다 훨씬 더 컸다. 따라서 본 연구에서 시 험한 팁 형상은 통로와류 영역에서는 압력손실의 저감 효과가 매우 뛰어난 반면에, 팁누설와류 영 역에서는 오히려 압력손실이 크게 증가함을 확인 할 수 있다.

Fig. 8은 식 (3)과 같이 정의된 측정영역 전체에 걸쳐 질량평균된 전압력손실계수 ¯_{pt}를 w/p의 함 수로 표시한 것이다. w/p가 2.64%에서 5.28%로 증 가하면 ¯_{pt}가 급격하게 감소하였으나, w/p가 5.28%에서 10.55%로 변화할 경우 ¯_{pt}의 변화가 거의 없었다. w/p가 5.28% 보다 클 때 ¯_{ct}의 변화

Fig. 8 C_{Pt} as a function of w/p at x/b = 1.2 for h/s = 1.36%

Fig. 9 Contours of β at x/b = 1.2 for h/s = 1.36%in the case of w/p = 7.92%

Fig. 10 Profiles of $\overline{\beta}_z$ at x/b = 1.2 for h/s = 1.36%

가 거의 없는 이유는 Fig. 7에서 알 수 있듯이 *z/s*> 0.9에서 나타나는 $\overline{C}_{pt,z}$ 의 증가가 *z/s* < 0.9에 서 $\overline{C}_{pt,z}$ 의 감소와 상쇄되기 때문이다. 본 연구의 팁 형상에 의한 압력손실은 *w/p*에 관계없이 평면

Fig. 11 $\overline{\beta}$ as a function of w/p at x/b = 1.2 for h/s = 1.36%

팁의 압력손실보다 더 작지만, 전면스퀼러팁의 압력손실보다는 더 큼을 알 수 있다.

3.4 유동의 요각

Fig. 9는 w/p = 7.92%일 때 5공프로우브로 측정 된 유동의 요각 β의 분포이다. 이 국소 요각 분 포를 이용하여 식 (2)와 같은 방법으로 피치방향 으로 질량평균된 요각 β₂를 구하고, 그 프로파일 을 Fig. 10에 제시하였다. β₂가 모든 z/s에서 익형 의 설계 유출각 β₂(62.6°)와 일치하는 것이 이상 적이나, 실제로는 Fig. 10과 같이 "언더턴 (underturn)"과 "오버턴(overturn)"이 발생한다. 미 드스팬 쪽 통로와류 영역에서는 언더턴, 케이싱 쪽 통로와류 영역에서는 오버턴, 팁누설영역에서 는 심한 언더턴이 존재하였다. 본 연구의 유동 요각은 케이싱 근처에서 전면스퀼러팁보다 더 작 았고 통로유동 영역에서는 전면스퀼러팁보다 더 작

측정영역 전체에 걸쳐 질량평균된 유동 요각 는(Fig. 11) 윙렛의 폭에 관계없이 거의 일정하였 고, 평면팁보다는 대략 1.2° 정도 크지만 전면스 퀼러팁과는 차이가 거의 없었다. 따라서 본 연구 의 팁 형상은 유동의 선회 측면에서 평면팁보다 는 조금 더 우수하고 전면스퀼러팁과는 거의 비 슷한 성능을 보여 주었다.

4. 결 론

본 연구에서는 압력면윙렛과 흡입면스퀼러가 설치된 동익 팁에 대해 3차원 유동 및 압력손실 측정 연구를 수행하였다. 그 결과 다음과 같은 결론을 얻을 수 있었다.

(1) 본 연구에서 시험한 팁 형상은 케이싱 근처 에 시계방향으로 회전하는 벽제트 형태의 강력한 팁누설와류를 발생시켰다. 이 팁누설와류는 윙렛 의 폭이 커질수록 강해지고 그 범위도 피치방향 으로 크게 확대되었다.

(2) 본 연구의 팁 형상은 통로와류 영역에서 압 력손실의 저감 효과가 매우 뛰어났지만, 팁누설 와류 영역에서는 압력손실을 오히려 크게 증가시 켰다.

(3) 본 연구의 질량평균 압력손실은 평면팁에 비해서는 더 낮았지만, 전면스퀼러팁보다는 더 크게 나타났다. 윙렛의 폭이 증가할수록, 질량평 균 압력손실은 감소하는 경향을 보였다.

(4) 본 연구의 팁 형상은 유동의 선회 측면에서 평면팁보다는 조금 더 우수하지만, 전면스퀼러팁 과는 거의 비슷한 성능을 보여 주었다.

후 기

본 연구는 금오공과대학교 학술연구비에 의하 여 연구된 논문입니다.

참고문헌 (References)

- Lee, S. W., Kim, S. U. and Kim, K. H., 2012, "Aerodynamic Performance of Winglets Covering the Tip Gap Inlet in a Turbine Cascade," *International Journal of Heat and Fluid Flow*, Vol. 34, pp. 36~46.
- (2) Bindon, J. P., 1989, "The Measurement and Formation of Tip Clearance Loss," *ASME Journal* of Turbomachinery, Vol. 111, pp. 257~263.
- (3) Yamamoto, A., 1989, "Endwall Flow/Loss Mechanism in a Linear Turbine Cascade with Blade Tip Clearance," *ASME Journal of Turbomachinery*, Vol. 111, pp. 264~274.
- (4) Lee, S. W., Moon, H. S. and Lee, S. E., 2009, "Tip Gap Height Effects on Flow Structure and Heat/Mass Transfer over Plane Tip of a High-Turning Turbine

Rotot Blade," International Journal of Heat and Fluid Flow, Vol. 30, pp. 198~210.

- (5) Lee, S. W. and Chae, B. J., 2008, "Effects of Squealer Rim Height on Aerodynamic Losses Downstream of a High-Turning Turbine Rotor Blade," *Experimental Thermal and Fluid Science*, Vol. 32, pp. 1440~1447.
- (6) Lee, S. W. and Choi, M. Y., 2010, "Tip Gap Height Effects on the Aerodynamic Performance of a Cavity Squealer Tip in a Turbine Cascade in Comparison with Plane Tip Results: Part 2-Aerodynamic Loss," *Experiments in Fluids*, Vol. 49, pp. 713~723.
- (7) Lee, S. E., Lee S. W. and Kwak, H. S., 2011, "Tip Leakage Aerodynamics over Stepped Squealer Tips in a Turbine Cascade," *Experimental Thermal* and Fluid Science, Vol. 35, pp. 135~145.
- (8) Li, W., Jiang, H., Zhang, Q, and Lee, S. W., 2013, "Squealer Tip Leakage Flow Characteristics in Transonic Condition," *ASME Journal of Engineering for Gas Turbine and Power* (in Press), ASME Paper GT2013-95283.
- (9) O'Dowd, D. O., Zhang, Q., He, L., Oldfield, M. L. G., Ligrani, P. M., Cheong, B. C. Y. and Tibbott, I., 2011, "Aerothermal Performance of a Winglet at Engine Representative Mach and Reynolds Numbers," *ASME Journal of Turbomachinery*, Vol. 133, pp. 041026-1~041026-8.
- (10) Papa, M., Goldstein, R. J. and Gori, F., 2003, "Effects of Geometry and Tip Clearance on the Mass/Heat Transfer from a Large-Scale Gas Turbine Blade," *ASME Journal of Turbomachinery*, Vol. 125, pp. 90~96.
- (11) Treaster, A. L. and Yocum, A. M., 1979, "The Calibration and Application of Five-Hole probes," *ISA Transactions*, Vol. 18, pp. 23~34.
- (12) Abernethy, R. B., Benedict, R. P. and Dowdell, R. B., 1985, "ASME Measurement Uncertainty," *ASME Journal of Fluids Engineering*, Vol. 107, pp. 161~164.