DOI QR코드

DOI QR Code

The Anti-aging Effects of Various Berries in the Human Skin Keratinocyte (HaCaT) Cells

피부각질형성세포에서 다양한 베리류의 피부노화개선 효과 비교

  • Received : 2013.08.27
  • Accepted : 2012.12.09
  • Published : 2014.04.30

Abstract

Ultraviolet B (UV-B) irradiation is a negative factor that induces skin damage, inflammation, and aging. UVB irradiation induces the inflammatory response through interleukin (IL)-6 and IL-8 expression in keratinocytes. In addition, it induces the production of reactive oxygen species (ROS) and the activation of matrix metalloproteinase-1 (MMP-1), which plays an important role in collagen 1 degradation in the extracellular matrix. We investigated the antiaging effects of five kinds of berry in human skin keratinocyte (HaCaT) cells using juice of black raspberry (Rubus occidentalis), blueberry wild (Vacciniun angustifolium) and cultivar (Vacciniun corymbosum), black chokeberry (Aronia melanocarpa (Michx.) Elliott), and mulberry (Morus abla). HaCaT cells irradiated with UV-B exhibited increased ROS generation, as well as IL-6, IL-8, and MMP-1 gene expression, when compared to the control cells that were not irradiated with UV-B. However, pre-treatment of berry juice before UV-B irradiation significantly down-regulated the UV-B-induced ROS generation and inflammatory cytokine and MMP-1 expression. The results suggest that all berries have anti-aging effects including lowering inflammatory cytokine levels, ROS generation, and MMP-1 expression in HaCaT cells during UV-B irradiation.

다양한 베리류인 복분자, 블루베리(재배종), 블루베리(야생종), 블랙초크베리 및 오디의 inflammatory cytokines 발현 억제효과, MMP-1 발현 억제활성 그리고 ROS 생성 저해효과를 비교해보았다. Inflammatory cytokines 발현 억제효과 비교에서 복분자와 블루베리(재배종)의 TNF-${\alpha}$ 억제활성이 가장 뛰어났고, IL-6의 경우 블랙초크베리, 블루베리, 복분자 순으로 inflammatory cytokines의 발현 억제 효과를 보여주었다. 또한 블랙초크베리, 블루베리(야생종), 복분자가 IL-8의 발현을 눈에 띄게 억제 하였다. 더불어 복분자와 오디의 inflammatory cytokines 발현 억제에 대해 시너지 효과가 있는지 여부를 확인하기 위해 복분자와 오디를 각각 $250{\mu}g/mL$씩 함께 처리한 결과 복분자 $250{\mu}g/mL$과 오디 $250{\mu}g/mL$의 농도로 동시에 처리할 경우, 복분자와 오디를 각각 500 ${\mu}g/mL$로 처리한 그룹에 비해 시너지 효과를 보이지 않았지만 오디만을 처리했을 때보다는 염증성 사이토카인의 발현이 감소됨을 확인하였다. 또한 베리류 착즙액을 처리한 모든 그룹에서 MMP-1 mRNA의 발현이 현저하게 감소되었고, 그중에서도 특히 블루베리(야생종)의 효과가 가장 탁월하였다. 복분자($250{\mu}g/mL$)와 오디($250{\mu}g/mL$)를 동시에 처리한 그룹과 복분자 또는 오디를 각각 500 ${\mu}g/mL$로 처리한 그룹을 비교해본 결과, 복분자와 오디를 동시에 처리한 그룹이 복분자와 오디만을 각각 처리한 그룹보다 MMP-1 mRNA의 발현이 좀 더 감소하는 효과를 보여주었다. ROS 생성저해 효과를 비교한 결과, 블랙초크베리가 가장 뛰어났고 그 다음으로 복분자, 블루베리(재배종)의 순으로 두 착즙액의 ROS 생성 저해 효과가 비슷한 것으로 나타났다. 그러나 복분자 $250{\mu}g/mL$과 오디 $250{\mu}g/mL$의 농도로 동시에 처리그룹의 경우 ROS 생성에 대한 시너지 억제효과를 보이지 않았다. 이상의 결과들로부터 다섯 가지 베리류 즉, 복분자, 블루베리(재배종), 블루베리(야생종), 블랙초크베리 및 오디의 inflammatory cytokines 과 MMP-1 mRNA 발현 및 ROS 생성에 대한 저해 효과는 각각의 베리류에서 차이를 보였으나, 다섯가지 베리류 모두 항염증, 항산화 작용을 통해 피부노화 개선에 기여할 것으로 사료된다.

Keywords

References

  1. Chung JH. Photoaging in Asians. Photodermatol. Photo. 19: 109-121 (2003) https://doi.org/10.1034/j.1600-0781.2003.00027.x
  2. Afaq F, Adhami VM, Ahmad N, Mukhtar H. Botanical antioxidants for chemoprevention of photocarcinogenesis. Front. Biosci. 7: 784-792 (2002) https://doi.org/10.2741/afaq
  3. Clydesdale GJ, Dandie GW, Muller HK. Ultraviolet light induced injury: Immunological and inflammatory effests. Immunol. Cell Biol. 79: 547-568 (2001) https://doi.org/10.1046/j.1440-1711.2001.01047.x
  4. Katiyar SK, Matsui MS, Elmets CA, Mukhtar H. Polyphenolic antioxidant(-)-epigallocatechin-3-gallate from green tea reduces UVB-induced inflammatory responses and infiltration of leukocytes in human skin. Photochem. Photobiol. 69: 148-153 (1999)
  5. Fisher GJ, Wang ZQ, Datta SC, Varani J, Kang S, Voorhees JJ. Pathophysiology of premature skin aging induced by ultraviolet light. New Engl. J. Med. 337: 1419-1428 (1997) https://doi.org/10.1056/NEJM199711133372003
  6. Di Girolamo N, Wakefield D, Coroneo MT. UVB mediated induction of cytokines and growth factors in pterygium epithelial cells involves cell surface receptors and intracellular signaling. Invest. Ophth. Vis. Sci. 47: 2430-2437 (2006) https://doi.org/10.1167/iovs.05-1130
  7. Shimauchi T, Sugita K, Nishio D, Isoda H, Abe S, Yamada Y, Hino R, Ogata M, Kabashima K, Tokura Y. Alterations of serum Th1 and Th2 chemokines by combination therapy of interferon-${\gamma}$ and narrowband UVB in patients with mycosis fungoides. J. Dermatol. Sci. 50: 217-225 (2008) https://doi.org/10.1016/j.jdermsci.2007.12.004
  8. Tanaka K, Hasegawa J, Asamitsu K, Okamoto T. Prevention of the ultraviolet B-mediated skin photoaging by a nuclear factor ${\kappa}B$ inhibitor, parthenolide. J. Pharmacol. Exp. Ther. 315: 624-630 (2005) https://doi.org/10.1124/jpet.105.088674
  9. Yarosh D, Both D, Kibitel J, Anderson C, Elmets C, Brash D, Brown D. Regulation of $TNF{\alpha}$ production and release in human and mouse keratinocytes and mouse skin after UV-B irradiation. Photodermatol. Photo. 16: 263-270 (2000) https://doi.org/10.1034/j.1600-0781.2000.160606.x
  10. Yoshizumi M, Nakamura T, Kato M, Ishioka T, Kozawa K, Wakamatsu K, Kimura H. Release of cytokines/chemokines and cell death in UVB-irradiated human keratinocytes, HaCaT. Cell Biol. Int. 32: 1405-1411 (2008) https://doi.org/10.1016/j.cellbi.2008.08.011
  11. Erden Inal M, Kahraman A, Kken T. Beneficial effects of quercetin on oxidative stress induced by ultraviolet A. Clin. Exp. Dermatol. 26: 536-539 (2001) https://doi.org/10.1046/j.1365-2230.2001.00884.x
  12. Thiele J, Elsner, P. Oxidants and Antioxidants in Cutaneous Biology. Karger Medical and Scientific Publishers, Basel, Switzerland. pp. 1-17 (2001)
  13. Miyachi Y. Photoaging from an oxidative standpoint. J. Dermatol. Sci. 9: 79-86 (1995) https://doi.org/10.1016/0923-1811(94)00363-J
  14. Kligman LH, Kligman AM. The nature of photoaging: its prevention and repair. Photodermatology 3: 215-227 (1986)
  15. Verma RP, Hansch C. Matrix metalloproteinases (MMPs): Chemical-biological functions and (Q)SARs. Bioorg. Med. Chem. 15: 2223-2268 (2007) https://doi.org/10.1016/j.bmc.2007.01.011
  16. Watanabe H, Shimizu T, Nishihira J, Abe R, Nakayama T, Taniguchi M, Sabe H, Ishibashi T, Shimizu H. Ultraviolet A-induced production of matrix metalloproteinase-1 is mediated by macrophage migration inhibitory factor (MIF) in human dermal fibroblasts. J. Biol. Chem. 279: 1676-1683 (2003)
  17. Hwang YP, Choi JH, Kim HG, Choi JM, Hwang SK, Chung YC, Jeong HG. Cultivated ginseng suppresses ultraviolet B-induced collagenase activation via mitogen-activated protein kinases and nuclear factor NF-${\kappa}B$/activator protein-1-dependent signaling in human dermal fibroblasts. Nutr. Res. 32: 428-438 (2012) https://doi.org/10.1016/j.nutres.2012.04.005
  18. Boivin D, Blanchette M, Barrette S, Moghrabi A, Beliveau R. Inhibition of cancer cell proliferation and suppression of TNF-induced activation of $NF{\kappa}B$ by edible berry juice. Anticancer Res. 27: 937-948 (2007)
  19. Rosenkranz AR, Schmaldienst S, Stuhlmeier KM, Chen W, Knapp W, Zlabinger GJ. A microplate assay for the detection of oxidative products using 2',7'-dichlorofluorescin-diacetate. J. Immunol. Methods 156: 39-45 (1992) https://doi.org/10.1016/0022-1759(92)90008-H
  20. Torri E, Lemos M, Caliari V, Kassuya CA, L. Bastos JK, Andrade SF. Anti-inflammatory and antinociceptive properties of blueberry extract (Vaccinium corymbosum). J. Pharm. Pharmacol. 59: 591-596 (2007) https://doi.org/10.1211/jpp.59.4.0015
  21. Yang HM, Lim SS, Lee YS, Shin HK, Oh YS, Kim JK. Comparison of the anti-inflammatory effects of the extracts from Rubus coreanus and Rubus occidentalis. Korean J. Food Sci. Technol. Soc. 39: 342-347 (2007)
  22. Ohgami K, Ilieva I, Shiratori K, Koyama Y, Jin XH, Yoshida K, Kase S, Kitaichi N, Suzuki Y, Tanaka T, Ohno S. Anti-inflammatory effects of aronia extract on rat endotoxin-induced uveitis. Invest. Ophth. Vis. Sci. 46: 275-281 (2005) https://doi.org/10.1167/iovs.04-0715
  23. Bae JY, Lim SS, Choi JS, Kang YH. Protective actions of Rubus coreanus ethanol extract on collagenous extracellular matrix in ultraviolet-B irradiation-induced human dermal fibroblasts. Nutr. Res. Pract. 1: 279-284 (2007) https://doi.org/10.4162/nrp.2007.1.4.279
  24. Zafarullah M, Li WQ, Sylvester J, Ahmad M. Molecular mechanisms of N-acetylcysteine actions. Cell Mol. Life Sci. 60: 6-20 (2003) https://doi.org/10.1007/s000180300001
  25. Tsuji F, Miyake Y, Aono H, Kawashima Y, Mita S. Effects of bucillamine and N-acetyl-L-cysteine on cytokine production and collogen-induced arthritis (CIA). Clin. Exp. Immunol. 115: 26-31 (1999) https://doi.org/10.1046/j.1365-2249.1999.00749.x
  26. Rahman A, Kefer J, Bando M, Niles WD, Malik AB. E-selectin expression in human endothelial cells by TNF $\alpha$-induced oxidant generation and NF-${\kappa}B$ activation. Am. J. Physiol. 275: 533-544 (1998)
  27. Verhasselt V, Vanden Berghe W, Vanderheyde N, Willems F, Haegeman G, Goldman M. N-acetyl-L-cysteine inhibits primary human T cell responses at the dentritic cell level: association with NF-${\kappa}B$ inhibition. J. Immunol. 162: 2569-2574 (1999)
  28. Oszmianski J, Sapis JC. Anthocyanins in fruits of Aronia melanocarpa (chokeberry). J. Food Sci. 53: 1241-1242 (1988) https://doi.org/10.1111/j.1365-2621.1988.tb13577.x
  29. Wu X, Gu L, Prior RL, McKay S. Characterization of anthocyanins and proanthocyanidins in some cultivars of ribes, aronia, and sambucus and their antioxidant capacity. J. Agr. Food Chem. 52: 7846-7856 (2004) https://doi.org/10.1021/jf0486850
  30. Matsumoto M, Hara H, Chiji H, Kasai T. Gastroprotective effect of red pigments in black chokeberry fruit (Aronia melanocarpa Elliot) on acute gastric hemorrhagic lesions in rats. J. Agr. Food Chem. 52: 2226-2229 (2004) https://doi.org/10.1021/jf034818q
  31. Jeong JM. Antioxidative and antiallergic effects of aronia (Aronia melanocarpa) extract. J. Korea Soc. Food Sci. Nutr. 37: 1109-1113 (2008) https://doi.org/10.3746/jkfn.2008.37.9.1109
  32. Kokotkiewicz A, Jaremicz Z, Luczkiewicz M. Aronia plants: a review of traditional use, biological activities, and perspectives for modern medicine. J. Med. Food 13: 255-69 (2010) https://doi.org/10.1089/jmf.2009.0062
  33. Tulio AZ Jr, Reese RN, Wyzgoski FJ, Rinaldi PL, Fu R, Scheerens JC, Miller AR. Cyanidin 3-rutinoside and cyanidin 3-xylosylrutinoside as primary phenolic antioxidants in black raspberry. J. Agr. Food Chem. 56: 1880-1888 (2008) https://doi.org/10.1021/jf072313k
  34. Sun P, Ye W, Zheng G, Wang Z, Chen Y, Ogihara Y, Takeda T. A new flavonol glycoside, epimedin K, from Epimedium koreanum. Chem. Pharm. Bull. 44: 446-447 (1996) https://doi.org/10.1248/cpb.44.446
  35. Lee JW, Do JH. Determination of total phenolic compounds from the fruit of Rubus coreanum and antioxidative activity. J. Korean Soc. Food Sci. Nutr. 29: 943-947 (2000)
  36. Wang SY, Lin HS. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J. Agr. Food Chem. 48: 140-146 (2000) https://doi.org/10.1021/jf9908345
  37. Wang H, Cao G, Prior R. Total antioxidant capacity of fruits. J. Agr. Food Chem. 44: 701-705 (1996) https://doi.org/10.1021/jf950579y
  38. Mazza G, Oomah BD. Herbs, Botanicals and Teas. CRC Press, Boca Raton, FL, USA. pp. 289-318 (2000)
  39. Prior RL, Cao G, Martin A, Sofic E, McEwan J, O'Brein C, Lischner N, Ehlenfeldt M, Kalt W, Krewer G, Mainland CM. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity and variety of Vaccinium species. J. Agr. Food Chem. 46: 2686-2693 (1998) https://doi.org/10.1021/jf980145d
  40. Kalt W, Forney CF, Martin A, Prior RL. Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. J. Agr. Food Chem. 47: 4638-4644 (1999) https://doi.org/10.1021/jf990266t

Cited by

  1. Mechanisms for Anti-wrinkle Activities from Fractions of Black Chokeberries vol.26, pp.1, 2016, https://doi.org/10.5352/JLS.2016.26.1.34
  2. Antioxidant Activities of Various Berries Ethanolic Extract vol.23, pp.1, 2015, https://doi.org/10.7783/KJMCS.2015.23.1.49