DOI QR코드

DOI QR Code

The Antiviral Effects of Areca catechu L. Extract

빈랑 추출물의 새로운 항바이러스 활성

  • Lee, Doseung (Jeju Biodiversity Research Institute (JBRI), Jeju Technopark) ;
  • Boo, Kyung Hwan (Subtropical Horticulture Research Institute, Jeju National University) ;
  • Kim, Young Cheon (Subtropical Horticulture Research Institute, Jeju National University) ;
  • Lee, Jin-Man (Department of Food & Biotechnology, Hoseo University) ;
  • Kang, Seungtae (College of Applied Life Science (SARI), Jeju National University) ;
  • Lee, Wang Shik (College of Applied Life Science (SARI), Jeju National University) ;
  • Riu, Key Zung (College of Applied Life Science (SARI), Jeju National University) ;
  • Lee, Dong-Sun (College of Applied Life Science (SARI), Jeju National University)
  • 이도승 ((재)제주테크노파크 생물종다양성연구소) ;
  • 부경환 (제주대학교 아열대원예산업연구소) ;
  • 김영천 (제주대학교 아열대원예산업연구소) ;
  • 이진만 (호서대학교 식품공학과) ;
  • 강승태 (제주대학교 생명공학부) ;
  • 이왕식 (제주대학교 생명공학부) ;
  • 류기중 (제주대학교 생명공학부) ;
  • 이동선 (제주대학교 생명공학부)
  • Received : 2013.11.26
  • Accepted : 2014.01.29
  • Published : 2014.04.30

Abstract

Trafficking of viral glycoproteins to the cell surface results in syncytium formation in baby hamster kidney (BHK) cells infected with Newcastle disease virus (NDV). An extract from the medicinal Areca catechu L plant inhibited not only syncytium formation, but also trafficking of the hemagglutinin-neuramidase (HN) glycoprotein to the cell-surface. The viral glycoprotein was processed within the endoplasmic reticulum during transit to the cell membrane. Fungal extracts showed inhibitory activities ($IC_{50}10{\mu}g/mL$) against ${\alpha}$-glucosidase. These results suggested that A. catechu L. extracts inhibited the cell-surface expression of NDV-HN glycoprotein without significantly affecting HN glycoprotein synthesis in NDV-infected BHK cells.

Newcastle disease virus (NDV) 감염된 baby hamster kidney (BHK) 세포에서 합포체 형성은 세포막 표면으로의 수송된 바이러스 당단백질 hemagglutinin-neuramidase (HN)에 의해 일어난다. HAU 값은 추출물의 농도가 25.0과 $3.2{\mu}g/mL$ 사이에서는 현저하게 감소하였으나, NDV 감염된 HAD (%)는 $25.0{\mu}g/mL$ 농도에서 광범위한 흡착능의 감소를 나타내 바이러스 당단백질의 세포내 생합성은 저해되지 않았다. 그러므로, 약용식물인 빈랑 메탄올 추출물이 바이러스 당단백질의 세포막으로의 수송과 함께 합포체 형성을 저해하여 항바이러스 작용을 하였다. 또한 빈랑 추출물의 저해활성을 조사한 결과 ${\alpha}$-glucosidase에 대한 추출물의 $IC_{50}$$10.0{\mu}g/mL$이었으며, ${\alpha}$-mannosidase, ${\beta}$-glucosidase, ${\beta}$-mannosidase에 대한 빈랑 추출물의 $IC_{50}$은 각각 20.0, 40.0, $80.0{\mu}g/mL$로 나타나 ${\beta}$-type glycosidases 보다 ${\alpha}$-type glycosidases에 대한 효소활성 저해능이 우수하였다. 따라서 $IC_{50}$농도에서는 세포내에서 당단백질 생합성은 저해되지 않으며 당단백질의 수송을 저해하는 것으로 판단되었으며 향후 항바이러스 관련 작용기작의 연구가 필요하다고 판단된다.

Keywords

References

  1. Lee KS, Kim SH, Chun SH, Park SS, Pack CS, Shin YS. Antimicrobial activity of Areca catechu L. extract of against intestinal pathogens. Korean J. Food. Nutr. 11: 36-40 (1998)
  2. Lee KS, Kim SH, Kim SH, Park SS, Chun JY, Shin YS. Antimicrobial activity of herbs related with treatments of intestinal disease against intestinal pathogens. Korean J. Food. Nutr. 11: 31-35 (1998)
  3. Chin JE, Cho NC. The effects of Areca catechu extracts on tyrosinase gene expression in B16 mouse melanoma cells. Korean J. Food. Nutr. 20: 240-244 (2007)
  4. Kim JH, Oh HS. Biological activities of solvent fractions isolation from Areca catechu L. J. Exp. Biomed. Sci. 16: 271-277 (2010)
  5. Dennis JW, Laferté S, Waghorne C, Breitman ML, Kerbel RS. Beta 1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science 236: 582-585 (1987) https://doi.org/10.1126/science.2953071
  6. Lee DS, Lee JM, Kim SU, Chang KT, Lee SH. Ceftezole, a cephem antibiotic, is an ${\alpha}$-glucosidase inhibitor with in vivo antidiabetic activity. Int. J. Mol. Med. 20: 379-383 (2007)
  7. Mehta A, Zitzmann N, Rudd PM, Block TM, Dwek RA. ${\alpha}$-Glucosidase inhibitors as potential broad based anti-viral agents. FEBS Lett. 430: 17-22 (1998) https://doi.org/10.1016/S0014-5793(98)00525-0
  8. Goss PE, Baker MA, Carver JP, Dennis JW. Inhibitors of carbohydrate processing: A new class of anticancer agents. Clin. Cancer. Res. 1: 935-944 (1995)
  9. van de Laar FA, Lucassen PL, Akkermans RP, van de Lisdonk EH, Rutten GE, van Weel C. Alpha-glucosidase inhibitors for patients with type 2 diabetes: Results from a Cochrane systematic review and meta-analysis. Diabetes Care 28: 154-163 (2005) https://doi.org/10.2337/diacare.28.1.154
  10. Courageot MP, Frenkiel MP, Dos Santos CD, Deubel V, Despres P. ${\alpha}$-Glucosidase inhibitors reduce dengue virus production by affecting the initial steps of virion morphogenesis in the endoplasmic reticulum. J. Virol. 74: 564-572 (2000) https://doi.org/10.1128/JVI.74.1.564-572.2000
  11. Dettenhofer M, Yu XF. Characterization of the biosynthesis of human immunodeficiency virus Type 1 Env from infected T-cells and the effects of glucose trimming of Env on virion infectivity. J. Biol. Chem. 276: 5985-5991 (2001) https://doi.org/10.1074/jbc.M008933200
  12. Johnson VA, Walker BD, Barlow MA, Paradis TJ, Chou TC, Hirsch MS. Synergistic inhibition of human immunodeficiency virus type 1 and type 2 replication in vitro by castanospermine and 3'-azido-3'-deoxythymidine. Antimicrob. Agents Ch. 3: 53-57 (1989)
  13. Tsujii E, Muroi M, Shiragami N, Takatsuki A. Nectrisine is a potent inhibitor of $\alpha$-glucosidases, demonstrating activities similarly at enzyme and cellular levels. Biochem. Bioph. Res. Co. 220: 459-466 (1996) https://doi.org/10.1006/bbrc.1996.0427
  14. Papandreou MJ, Barbouche R, Guieu R, Kieny MP, Fenouillet E. The ${\alpha}$-glucosidase inhibitor 1-deoxynojirimycin blocks human immunodeficiency virus envelope glycoprotein-mediated membrane fusion at the CXCR4 binding step. Mol. Pharmacol. 61. 186-193 (2002) https://doi.org/10.1124/mol.61.1.186
  15. Fischer PB, Collin M, Karlsson GB, James W, Butters TD, Davis SJ, Gordon S, Dwek RA, Platt FM. The ${\alpha}$-glucosidase inhibitor N-buthyldeoxynojirimycin inhibits human immunodeficiency virus entry at the level of post-CD4 binding. J. Virol. 69: 5791-5797 (1995)
  16. Gruters RA, Neefjes JJ, Tersmette M, de Goede RE, Tulp A, Huisman HG, Miedema F, Ploegh HL. Interference with HIV induced syncytium formation and viral infectivity by inhibitors of trimming glucosidase. Nature 330: 74-77 (1987) https://doi.org/10.1038/330074a0
  17. Einfeld D. Maturation and assembly of retroviral glycoproteins. Curr. Top Microbiol. 214: 133-176 (1996)
  18. Quinn TC. HIV epidemiology and the effects of antiviral therapy on long-term consequences. AIDS 22 (Suppl 3): 7-12 (2008)
  19. Lee DS, Kim SC, Kim DH, Kim JH, Park SP, Riu YC, Kim MY, Cho SK, Riu KZ, Lee DS. Screening of Phellinus linteus, a medicinal mushroom, for anti-viral activity. J. Korean Soc. Appl. Biol. Chem. 54: 475-478 (2011) https://doi.org/10.3839/jksabc.2011.073
  20. Kusumoto IT, Nakabayashi T, Kida H, Miyashiro H, Hattori M, Namba T, Shimotohno K. Screening of various plant extracts used in ayurvedic medicine for inhibitory effects on human immunodeficiency virus type 1 (HIV-1) protease. Phytother. Res. 9: 180-184 (1995) https://doi.org/10.1002/ptr.2650090305
  21. Hattori M, Nakabayashi T, Lim YA, Miyashiro H, Kurokawa M, Shiraki K, Gupta MP, Correa M, Pilapitiya U. Inhibitory effects of various Ayurvedic and Panamanian medicinal plants on the infection of herpes simplex virus-1 in vitro and in vivo. Phytother. Res. 9: 270-276 (1995) https://doi.org/10.1002/ptr.2650090408
  22. Lee DS, Lee SH. Genistein, a soy isoflavone, is a potent ${\alpha}$-glucosidase inhibitor. FEBS Lett. 501: 84-86 (2001) https://doi.org/10.1016/S0014-5793(01)02631-X
  23. Lee DS, Boo KH, Lee JM, Unno T, Lee WS, Cho MJ, Riu KZ, Lee DS. Anti-viral activity of blue chanterelle (Polyozellus multiplex) that inhibits ${\alpha}$-glucosidase. Food Sci. Biotechnol. 22: 747- 750 (2013) https://doi.org/10.1007/s10068-013-0140-7
  24. Muroi M, Takasu A, Yamasaki M, Takatsuki A. Folimycin (concanamycin A), an inhibitor of V-type H(+)-ATPase, blocks cell surface expression of virus-envelope glycoproteins. Biochem. Bioph. Res. Co. 193: 999-1005 (1993) https://doi.org/10.1006/bbrc.1993.1724

Cited by

  1. Anti-bacterial and Anti-oxidant Activities of Solvent Fractions of Arecae pericarpium Extracts vol.14, pp.4, 2016, https://doi.org/10.20402/ajbc.2016.0046