DOI QR코드

DOI QR Code

LDPC Decoder for WiMAX/WLAN using Improved Normalized Min-Sum Algorithm

개선된 정규화 최소합 알고리듬을 적용한 WiMAX/WLAN용 LDPC 복호기

  • Seo, Jin-Ho (School of Electronic Engineering, Kumoh National Institute of Technology) ;
  • Shin, Kyung-Wook (School of Electronic Engineering, Kumoh National Institute of Technology)
  • Received : 2013.11.15
  • Accepted : 2013.12.31
  • Published : 2014.04.30

Abstract

A hardware design of LDPC decoder which is based on the improved normalized min-sum(INMS) decoding algorithm is described in this paper. The designed LDPC decoder supports 19 block lengths(576~2304) and 6 code rates(1/2, 2/3A, 2/3B, 3/4A, 3/4B, 5/6) of IEEE 802.16e mobile WiMAX standard and 3 block lengths(648, 1296, 1944) and 4 code rates(1/2, 2/3, 3/4, 5/6) of IEEE 802.11n WLAN standard. The decoding function unit(DFU) which is a main arithmetic block is implemented using sign-magnitude(SM) arithmetic and INMS decoding algorithm to optimize hardware complexity and decoding performance. The LDPC decoder synthesized using a 0.18-${\mu}m$ CMOS cell library with 100 MHz clock has 284,409 gates and RAM of 62,976 bits, and it is verified by FPGA implementation. The estimated performance depending on code rate and block length is about 82~218 Mbps at 100 MHz@1.8V.

본 논문에서는 개선된 정규화 최소합(improved normalized min-sum) 복호 알고리듬을 적용한 LDPC 복호기를 설계하였다. 설계된 LDPC 복호기는 IEEE 802.16e 모바일 WiMAX 표준의 19가지 블록길이(576~2304)에 따른 6가지 부호율(1/2, 2/3A, 2/3B, 3/4A, 3/4B, 5/6)과 IEEE 802.11n 무선 랜 표준의 3가지 블록길이(648, 1296, 1944)에 따른 4가지 부호율(1/2, 2/3, 3/4, 5/6)을 지원한다. INMS 복호 알고리듬과 SM(sign-magnitude) 수체계 연산을 기반으로 하는 DFU(decoding function unit)을 구현하여 하드웨어 복잡도와 복호 성능을 최적화시켰다. 설계된 LDPC 복호기는 0.18-${\mu}m$ CMOS 셀 라이브러리를 이용하여 100 MHz 동작 주파수로 합성한 결과, 284,409 게이트와 62,976 비트의 메모리로 구현되었으며, FPGA 구현을 통해 하드웨어 동작을 검증하였다. 1.8V 전원전압에서 100 MHz로 동작 가능할 것으로 평가되며, 부호율과 블록길이에 따라 약 82~218 Mbps의 성능을 가질 것으로 예상된다.

Keywords

References

  1. R. Gallager, "Low-Density Parity-Check Codes," IRE Trans. Info. Theory, vol. IT-8, pp. 21-28, Jan. 1962.
  2. D.J.C. MacKay and R. M. Neal, "Near Shannon limit performance of low density parity check codes," IEE Electronic Letter, vol. 32, no. 18, pp. 1645-1646, Aug. 1996. https://doi.org/10.1049/el:19961141
  3. T. Rhicardson and R. Urbanke, "Efficient Encoding of Low Density Parity-Check Codes," IEEE Trans. Inform. Theory, vol. 47, pp. 638-656, Feb. 2001. https://doi.org/10.1109/18.910579
  4. IEEE 802.16e, Part 16: Air interface for fixed and mobile broadband wireless access systems, IEEE std 802.16e- 2005, Feb. 2006.
  5. IEEE 802.11n: Wireless LAN medium access control(MAC) and physical layer(PHY) specification: enhancements for higher throughput, IEEE Std. P802.11n, 2008.
  6. F.R. Kschischang, B.J. Frey, and H.A. Loeliger, "Factor graphs and the sum product algorithm," IEEE Trans. on Information Theory, vol. 47, pp. 498-519, Feb., 2001. https://doi.org/10.1109/18.910572
  7. J. Chen and M. Fossorier, "Density evolution for two improved BP-sased decoding algorithms of LDPC codes," IEEE Commun. Letter, vol. 6, pp. 208-210, May, 2002. https://doi.org/10.1109/4234.1001666
  8. M. Fossorier, M. Mihaljevic and H. Imai, "Reduced complexity iterative decoding of low-density parity check codes based on belief propagation," IEEE Trans. on Commun., vol. 47, pp. 673-680, May 1999. https://doi.org/10.1109/26.768759
  9. Daesun Oh, Parhi. K.K., "Min-Sum Decoder Architectures With Reduced Word Length for LDPC Codes, IEEE Trans. on Circuits and Systems, vol. 57, pp. 105-115, Jan., 2010. https://doi.org/10.1109/TCSI.2009.2016171
  10. J.H. Seo, H.W. Park, K.W. Shin, "A Design of Sign-magnitude based Multi-mode LDPC Decoder for WiMAX", Journal of the Korea Institute of Information and Communication Engineering, vol. 15, no. 11, pp. 2465-2473, 2011. 11. https://doi.org/10.6109/jkiice.2011.15.11.2465
  11. Xin-Yu Shih, Cheng-Zhou Zhan, and An-Yeu (Andy) Wu, "An 8.29mm2 52mW Multi-Mode LDPC Decoder Design for Mobile WiMAX System in 0.13${\mu}m$ CMOS Process," IEEE Journal of Solid-State Circuits, vol. 43, no. 3, March, 2008.
  12. T. Rhicardson, M. A. Shokrollahi, and R. Urbanke, "Design of Capacity-Approaching Irregular Low-Density Parity-Check codes," IEEE Trans. Inform. Theory, vol. 47, No. 2, Feb. 2001.
  13. Li Ping, W. K. Leung, and Nam Phamdo, "Low density parity check codes with semi-random parity check matrix," IEE Electronics Lett., Nov. 1999.
  14. Bo Xiang, Dan Bao, Shuangqu Huang, Xiaoyang Zeng, "A Fully-Overlapped Multi-Mode QC-LDPC Decoder Architecture for Mobile WiMAX Applications," 2010 IEEE Sym. on, pp. 211-212, 2010.
  15. Bo Xiang, Xiaoyang Zeng, "A 4.85$mm^2$ 847-955 Mb/s 397mW Dual-Path Fully-Overlapped QC-LDPC Decoder for the WiMAX System in 0.13 um CMOS," IEEE Inter. Conf., July 2010, pp. 225-232, 2010.