DOI QR코드

DOI QR Code

Geometric Path Tracking for a Fish Robot

물고기 로봇의 기하학적 경로 추종

  • Park, Jin-Hyun (Dept. of Mechatronics Eng., Kyeognam National University of Science and Technology) ;
  • Choi, Young-Kiu (Department of Electrical Engineering, Pusan National University)
  • Received : 2013.11.06
  • Accepted : 2013.12.24
  • Published : 2014.04.30

Abstract

The study of fish robot is a main subject that are related with the propulsive force comparison using a varying amplitude and frequency for body and tail motion trajectory, and the quick turn using a proper trajectory function. In this study, when a fish robot thrusts forward, feedback control is difficult to apply for a fish robot, because body and tail joints as a sine wave are rolled. Therefore, we detect the virtual position based on the path of the fish robot, define the angle errors using the detected position and the look-ahead point on the given path, and design a controller to track given path. We have found that the proposed method is useful through the computer simulations.

물고기 로봇 연구는 몸체 및 꼬리 관절 궤적의 크기나 주파수의 크기에 따른 로봇의 추력 비교 또는 꼬리 관절 궤적을 적절한 함수로 선정하여 물고기 로봇의 빠른 회전 등과 관련된 연구가 주를 이루고 있다. 본 연구에서는 물고기 로봇이 추력을 받아 앞으로 유영할 경우, 로봇의 몸체 및 꼬리 관절이 사인파와 같이 좌, 우로 요동치며 움직이므로 피드백 제어를 행하기 어렵다. 따라서 물고기 로봇의 경로에 기초한 가상의 위치를 검출하고, 검출된 위치를 사용하여 주어진 경로 위의 예견 점(look-ahead point)을 기준으로 방향 오차를 정의하여 물고기 로봇이 경로를 추종하도록 제어기를 설계하였다. 모의실험 결과 제안된 방법의 유용성을 확인할 수 있었다.

Keywords

References

  1. L. A. Zadeh, "Fuzzy Sets," Information and Control, Vol. 8, pp. 338-358, 1965. https://doi.org/10.1016/S0019-9958(65)90241-X
  2. E. H. Mamdani, "Application of Fuzzy Algorithms for the Control of a Dynamic Plant," Proceeding of IEEE 121, No. 12, pp. 1585-1588, 1974.
  3. J. W. Hines, MATLAB Supplement to Fuzzy and Neural Aproaches in Engineering, John Wiley and Sons, Inc, 1997.
  4. Jinding Liu and Huosheng Hu, "Biological Inspiration: From Carangiform Fish to Multi-Joint Robotic Fish," Journal of Bionic Engineering 7, pp. 35-48, 2010. https://doi.org/10.1016/S1672-6529(09)60184-0
  5. J. shao, L. Wang, J. Yu, "Development of an artificial fish-like robot and its application in cooperation transportation," Control Engineering Practice 16, pp. 569-584, 2008. https://doi.org/10.1016/j.conengprac.2007.06.005
  6. Liu J D, Dukes I, Hu H S, "Novel mechatronics design for a robotic fish," IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Canada, pp. 2077-2082. 2005.
  7. Liu J D, Hu H S. "Mimicry of sharp turning behaviours in a robotic fish." Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 3329- 3334, 2005.
  8. J. H. Park, T.H. Lee and Y. K. Choi, 'A study on the straight cruise of fish robot according to biological mimic', Journal of the Korea Institute of Information and Communication Engineering, vol. 15, no. 8, pp. 1756-1763, 2011. https://doi.org/10.6109/jkiice.2011.15.8.1756
  9. Qun Yan, Zhen Han, Shi-wu Zhang, Jie Yang, "Parametric Research of Experiments on a Carangiform Robot Fish," Journal of Bionic Engineering 5, pp. 95-101, 2008. https://doi.org/10.1016/S1672-6529(08)60012-8
  10. Lighthill M J, "Note on the swimming of slender fish." Journal of Fluid Mechanics, Vol. 9, pp. 305-317, 1960. https://doi.org/10.1017/S0022112060001110
  11. K.C.Koh and H.S. Cho, "A smooth path tracking algorithm for wheeled mobile robots with dynamic contraints," Journal of Intellignet and Robotics Systems, vol. 24, pp. 367-385, 1999. https://doi.org/10.1023/A:1008045202113
  12. D. H. Kim, C. J. Kim, C. S. Han, "Geometric path tracking and obstacle avoidance methds for an autonomous navigation of nonholonomic mobile robot," Journal of Intellignet and Robotics Systems, vol. 16, pp. 771-779, 2010.
  13. Biohydrodynamics MATLAB Toolbox, A. Munnier and B. Pincon, http://bht.gforge.inria.fr/
  14. Mathworks, matlabcentral File Exchange page [2009-04-04], http://www.mathworks.com/mat-labcentral/fileexchange/ 21872