DOI QR코드

DOI QR Code

Synthesis and Antifungal Property of Porous Al2O3 with Dispersions of Cu Nanoparticles

Cu 입자가 분산된 Al2O3 다공체의 제조 및 항균특성

  • Yoo, Ho-Suk (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Kim, Min-Sung (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Hyun, Chang-Yong (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 유호석 (서울과학기술대학교 신소재공학과) ;
  • 김민성 (서울과학기술대학교 신소재공학과) ;
  • 오승탁 (서울과학기술대학교 신소재공학과) ;
  • 현창용 (서울과학기술대학교 신소재공학과)
  • Received : 2013.12.18
  • Accepted : 2014.01.07
  • Published : 2014.02.28

Abstract

In order to fabricate the porous $Al_2O_3$ with dispersion of nano-sized Cu particles, freeze-drying of camphene/$Al_2O_3$ slurry and solution chemistry process using Cu-nitrate are introduced. Camphene slurries with 10 vol% $Al_2O_3$ was frozen at $-25^{\circ}C$. Pores were generated by sublimation of the camphene during drying in air. The sintered samples at 1400 and $1500^{\circ}C$ showed the same size of large pores which were aligned parallel to the sublimable vehicles growth direction. However, the size of fine pores in the internal walls of large pores decreased with increase in sintering temperature. It was shown that Cu particles with the size of 100 nm were homogeneously dispersed on the surfaces of the large pores. Antibacterial test using fungus revealed that the porous $Al_2O_3$/1 vol% Cu composite showed antifungal property due to the dispersion of Cu particles. The results are suggested that the porous composites with required pore characteristics and functional property can be fabricated by freeze-drying process and addition of functional nano particles by chemical method.

Keywords

References

  1. M.-J. Suk and Y.-S. Kwon: J. Kor. Powd. Met. Inst., 8 (2001) 215 (Korean).
  2. P. S. Liu and K. M. Liang: J. Mater. Sci., 36 (2001) 5059. https://doi.org/10.1023/A:1012483920628
  3. T. Ohji and M. Fukushima: Intern. Mater. Rev., 57 (2012) 115. https://doi.org/10.1179/1743280411Y.0000000006
  4. D.-H. Yang, B.-Y. Hur and S.-R. Yang: J. Alloy. Comp., 461 (2008) 221. https://doi.org/10.1016/j.jallcom.2007.07.098
  5. F. F. Lange and K. T. Miller: Adv. Ceram. Mater., 2 (1987) 827.
  6. P. Bardhan: Current Opinion in Solid State and Mater. Sci., 2 (1997) 577. https://doi.org/10.1016/S1359-0286(97)80048-4
  7. T. Fukasawa, M. Ando, T. Ohji and S. Kanzaki: J. Am. Ceram. Soc., 84 (2001) 230. https://doi.org/10.1111/j.1151-2916.2001.tb00638.x
  8. T. Fukasawa, Z.-Y. Deng, M. Ando, T. Ohji and Y. Goto: J. Mater. Sci., 36 (2001) 2523. https://doi.org/10.1023/A:1017946518955
  9. B.-H. Yoon, E.-J. Lee, H.-E. Kim and Y.-H. Koh: J. Am. Ceram. Soc., 90 (2007) 1753. https://doi.org/10.1111/j.1551-2916.2007.01703.x
  10. S.-T. Oh, S.-Y. Chang and M.-J. Suk: Trans. Nonferrous Met. Soc. China, 22 (2012) 688. https://doi.org/10.1016/S1003-6326(12)61787-7
  11. W. Lee and S.-T. Oh: J. Kor. Powd. Met. Inst., 19 (2012) 446 (Korean). https://doi.org/10.4150/KPMI.2012.19.6.446
  12. H.-S. Yoo, A.-G. Kim and C.-Y. Hyun: Kor. J. Mater. Res., 23 (2013) 67 (Korean). https://doi.org/10.3740/MRSK.2013.23.1.067
  13. K. Araki and J.W. Halloran: J. Am. Ceram. Soc., 87 (2004) 2014.
  14. S. Deville, E. Maire, G. Bernard-Granger, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup and C. Guizard: Nature Mater., 8 (2009) 966. https://doi.org/10.1038/nmat2571
  15. S. H. Yun, G.-N. Bae, B. U. Lee and J.-H. Ji: J. Kor. Soc. Ind. Environ., 4 (2007) 154.

Cited by

  1. Fabrication and Mechanical Properties of STS316L Porous Metal for Vacuum Injection Mold vol.22, pp.3, 2015, https://doi.org/10.4150/KPMI.2015.22.3.197