DOI QR코드

DOI QR Code

Disruption of the Myostatin Gene in Porcine Primary Fibroblasts and Embryos Using Zinc-Finger Nucleases

  • Huang, Xian-Ju (College of Animal Sciences and Technology, Nanjing Agricultural University) ;
  • Zhang, Hong-Xiao (College of Animal Sciences and Technology, Nanjing Agricultural University) ;
  • Wang, Huili (Institute of Animal Science, Jiangsu Academy of Agricultural Sciences) ;
  • Xiong, Kai (College of Animal Sciences and Technology, Nanjing Agricultural University) ;
  • Qin, Ling (College of Animal Sciences and Technology, Nanjing Agricultural University) ;
  • Liu, Honglin (College of Animal Sciences and Technology, Nanjing Agricultural University)
  • Received : 2013.07.17
  • Accepted : 2014.03.21
  • Published : 2014.04.30

Abstract

Myostatin represses muscle growth by negatively regulating the number and size of muscle fibers. Myostatin loss-of-function can result in the double-muscling phenotype and increased muscle mass. Thus, knockout of myostatin gene could improve the quality of meat from mammals. In the present study, zinc finger nucleases, a useful tool for generating gene knockout animals, were designed to target exon 1 of the myostatin gene. The designed ZFNs were introduced into porcine primary fibroblasts and early implantation embryos via electroporation and microinjection, respectively. Mutations around the ZFNs target site were detected in both primary fibroblasts and blastocysts. The proportion of mutant fibroblast cells and blastocyst was 4.81% and 5.31%, respectively. Thus, ZFNs can be used to knockout myostatin in porcine primary fibroblasts and early implantation embryos.

Keywords

References

  1. Carbery, I.D., Ji, D., Harrington, A., Brown, V., Weinstein, E.J., Liaw, L., and Cui, X. (2010). Targeted genome modification in mice using zinc-finger nucleases. Genetics 186, 451-459. https://doi.org/10.1534/genetics.110.117002
  2. Cermak, T., Doyle, E.L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., Baller, J.A., Somia, N.V., Bogdanove, A.J., and Voytas, D.F. (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39, e82. https://doi.org/10.1093/nar/gkr218
  3. Grobet, L., Martin, L.J., Poncelet, D., Pirottin, D., Brouwers, B., Riquet, J., Schoeberlein, A., Dunner, S., Menissier, F., Massabanda, J., et al. (1997). A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat. Genet. 17, 71-74. https://doi.org/10.1038/ng0997-71
  4. Hauschild, J., Petersen, B., Santiago, Y., Queisser, A.L., Carnwath, J.W., Lucas-Hahn, A., Zhang, L., Meng, X., Gregory, P.D., Schwinzer, R., et al. (2011). Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc. Natl. Acad. Sci. USA 108, 12013-12017. https://doi.org/10.1073/pnas.1106422108
  5. Ji, S., Losinski, R.L., Cornelius, S.G., Frank, G.R., Willis, G.M., Gerrard, D.E., Depreux, F.F., and Spurlock, M.E. (1998). Myostatin expression in porcine tissues: tissue specificity and developmental and postnatal regulation. Am. J. Physiol. 275, R1265-1273.
  6. Jin, D.I., Lee, S.H., Choi, J.H., Lee, J.S., Lee, J.E., Park, K.W., and Seo, J.S. (2003). Targeting efficiency of a-1,3-galactosyl transferase gene in pig fetal fibroblast cells. Exp. Mol. Med. 35, 572-577. https://doi.org/10.1038/emm.2003.75
  7. Kim, H.J., Lee, H.J., Kim, H., Cho, S.W., and Kim, J.S. (2009). Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res. 19, 1279-1288. https://doi.org/10.1101/gr.089417.108
  8. Li, P., Estrada, J.L., Burlak, C., and Tector, A.J. (2013). Biallelic knockout of the alpha-1,3 galactosyltransferase gene in porcine liver-derived cells using zinc finger nucleases. J. Surg. Res. 181, e39-45. https://doi.org/10.1016/j.jss.2012.06.035
  9. Mashimo, T., Takizawa, A., Voigt, B., Yoshimi, K., Hiai, H., Kuramoto, T., and Serikawa, T. (2010). Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases. PLoS One 5, e8870. https://doi.org/10.1371/journal.pone.0008870
  10. McPherron, A.C., Lawler, A.M., and Lee, S.J. (1997). Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387, 83-90. https://doi.org/10.1038/387083a0
  11. Rogers, C.S., Stoltz, D.A., Meyerholz, D.K., Ostedgaard, L.S., Rokhlina, T., Taft, P.J., Rogan, M.P., Pezzulo, A.A., Karp, P.H., Itani, O.A., et al. (2008). Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321, 1837-1841. https://doi.org/10.1126/science.1163600
  12. Schuelke, M., Wagner, K.R., Stolz, L.E., Hubner, C., Riebel, T., Komen, W., Braun, T., Tobin, J.F., and Lee, S.J. (2004). Myostatin mutation associated with gross muscle hypertrophy in a child. N. Engl. J. Med. 350, 2682-2688. https://doi.org/10.1056/NEJMoa040933
  13. Wiedenheft, B., Sternberg, S.H., and Doudna, J.A. (2012). RNAguided genetic silencing systems in bacteria and archaea. Nature 482, 331-338. https://doi.org/10.1038/nature10886
  14. Yang, D., Yang, H., Li, W., Zhao, B., Ouyang, Z., Liu, Z., Zhao, Y., Fan, N., Song, J., Tian, J., et al. (2011). Generation of PPARgamma mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Res. 21, 979-982. https://doi.org/10.1038/cr.2011.70
  15. Yu, S., Luo, J., Song, Z., Ding, F., Dai, Y., and Li, N. (2011). Highly efficient modification of beta-lactoglobulin (BLG) gene via zincfinger nucleases in cattle. Cell Res. 21, 1638-1640. https://doi.org/10.1038/cr.2011.153

Cited by

  1. The societal opportunities and challenges of genome editing vol.16, pp.1, 2015, https://doi.org/10.1186/s13059-015-0812-0
  2. Meganucleases Revolutionize the Production of Genetically Engineered Pigs for the Study of Human Diseases vol.44, pp.3, 2016, https://doi.org/10.1177/0192623315613160
  3. Efficient genome editing in cultured cells and embryos of Debao pig and swamp buffalo using the CRISPR/Cas9 system vol.54, pp.5, 2018, https://doi.org/10.1007/s11626-018-0236-8
  4. Enhanced muscle regeneration in freshwater prawn Macrobrachium rosenbergii achieved through in vivo silencing of the myostatin gene vol.50, pp.5, 2014, https://doi.org/10.1111/jwas.12607
  5. RNA Drugs and RNA Targets for Small Molecules: Principles, Progress, and Challenges vol.72, pp.4, 2020, https://doi.org/10.1124/pr.120.019554