DOI QR코드

DOI QR Code

Analysis of Sound Insulation Performance of Honeycomb Composite Panels for Cruise Ships

크루즈선박용 허니컴 패널의 차음 성능 해석

  • Kwon, Hyun-Wung (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Hong, Suk-Yoon (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Roh, Jae-Ouk (Samsung Heavy Industries Co., Ltd.) ;
  • Song, Jee-Hun (Department of Naval Architecture and Ocean Engineering, Chonnam National University)
  • 권현웅 (서울대학교 조선해양공학과) ;
  • 홍석윤 (서울대학교 조선해양공학과) ;
  • 노재욱 (삼성중공업) ;
  • 송지훈 (전남대학교 조선해양공학전공)
  • Received : 2014.01.24
  • Accepted : 2014.04.25
  • Published : 2014.04.30

Abstract

In this paper, the interface matrix of honeycomb composite panel has been derived by the governing equation of a honeycomb sandwich panel. The interface matrix of honeycomb panel is added to the previously developed transfer matrix method, thus analysis of the multi-layered insulation composite panel with honeycomb is accomplished. Furthermore, predictions of sound transmission loss(STL) for the ship's insulation panel with honeycomb and mineral wool are presented. The insulation performance of the honeycomb used for skin of the ship's insulation panel is better than that of 0.35 mm steel panel by 2dB, approximately. Although honeycomb panel has inefficient insulation performance beside steel panel, honeycomb panel achieve improvements in the performance of weight reduction. The surface density of the panel with honeycomb is rather than with steel by $5.2kg/m^2$. It is decrease in weight by 31.7 %.

본 연구에서는 허니컴 패널의 지배방정식을 이용하여 경계행렬식을 유도하였고, 이를 전달행렬법에 적용하여 허니컴 패널을 적용한 차음패널에 대한 해석 이론을 정립하였다. 또한, 허니컴 패널을 선박용 차음패널의 표면재로 적용하여 차음성능을 분석하였고, 철판을 표면재로 적용한 기존의 선박용 차음패널과 차음성능을 무게 당 감음량 기준으로 비교 분석하였다. 그 결과, 허니컴 패널의 차음성능이 0.35 mm 철판에 비해 STC 기준으로 2dB 높게 나와 허니컴 패널을 적용한 차음패널의 차음성능이 철판을 사용한 차음패널에 비해 무게 당 감음량을 고려할 시 우수하다는 것을 확인하였다. 또한, 허니컴 패널을 표면재로 사용한 차음패널의 면밀도가 철판을 사용한 차음패널에 비해 약 $5.2kg/m^2$ 가볍게 나타났고, 이는 약 31.7 % 무게 감소를 의미한다.

Keywords

References

  1. Allard, J. F.(1993), Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, Chapman & Hall, London, pp. 118-181.
  2. Biot, M. A.(1956), Theory of propagation of elastic waves in a fluid-saturated porous solid I. Low-frequency range II. Higher frequency range, J. Acoust. Soc. Am., Vol. 28, pp. 168-191. https://doi.org/10.1121/1.1908239
  3. Bolton, S., N. M. Shiau and Y. J. Kang(1996), Sound transmission through multi-panel structures lined with elastic porous materials, J. Sound Vib., Vol. 191, No. 3, pp. 317-347. https://doi.org/10.1006/jsvi.1996.0125
  4. Brouard, B., D. Lafarge and J. F. Allard(1995), A general method of modeling sound propagation in layered media. J. Sound Vib., Vol. 183, No. 1, pp. 129-142. https://doi.org/10.1006/jsvi.1995.0243
  5. Kang, H. J., J. S. Ih, J. S. Kim and H. S. Kim(2000), Prediction of the sound transmission loss through multilayered panels by using Gaussian distribution of directional incidence energy, J. Acoust. Soc. Am., Vol. 107, No. 3, pp. 1413-1420. https://doi.org/10.1121/1.428428
  6. Kim, J. S.(2009), Compressive strength restoration evaluation of sandwich composite laminates repaired by scarf method, The Korean Society for Railway, Vol. 12, No. 1, pp. 110-114.
  7. Renji, K. and P. S. Nair(1996), Modal density of composite honeycomb sandwich panels. J. Sound Vib., Vol. 195, No. 5, pp. 687-699. https://doi.org/10.1006/jsvi.1996.0456
  8. Wang, S. C., Z. X. Deng and W. D. Shen(2010), Sound transmission loss characteristics of unbounded orthotropic sandwich panels in bending vibration considering transverse shear deformation, Composite Structures, Vol. 92, No. 12, pp. 2885-2889. https://doi.org/10.1016/j.compstruct.2010.04.014
  9. Wang, T., V. S. Sokolinsky, S. Rajaram and S. R. Nutt (2005), Assessment of sandwich models for the prediction of sound transmission loss in unidirectional sandwich panels, Applied Acoustics, Vol. 66, pp. 245-262. https://doi.org/10.1016/j.apacoust.2004.08.005