DOI QR코드

DOI QR Code

아세톤-용매분해반응에 의한 톱밥으로부터 액체 연료물질의 전환 특성 연구

Conversion Characteristics of Liquid Fuels from Sawdust by Acetone-Solvolysis

  • 윤성욱 (단국대학교 공학교육혁신센터) ;
  • 이종집 (공주대학교 화학공학부)
  • Yoon, Sung Wook (Innovation Center for Engineering Education, Dankook University) ;
  • Lee, Jong-Jib (Division of Chemical Engineering, Kongju National University)
  • 투고 : 2014.02.05
  • 심사 : 2014.03.19
  • 발행 : 2014.04.30

초록

톱밥은 목재부산물로 생산되는 바이오매스 자원으로 액화할 경우 가솔린에 함유된 고옥탄가 물질과 유사한 화학구조를 가지고 있기 때문에 액체 연료물질로서 사용할 수 있는 가능성이 높다. 본 연구에서는 톱밥의 열화학적 전환방법으로 아세톤-용매분해반응을 실시하여 반응온도, 반응시간, 용매의 종류가 미치는 영향과 분해 생성물 등과 같은 분해특성을 조사하였다. 아세톤-용매분해반응에 의해 톱밥으로부터 생성된 액상 생성물은 다양한 케톤, 페놀 및 퓨란 화합물이었다. 액상생성물의 연소열량은 7,824 cal/g이었으며, $350^{\circ}C$, 40분에서 액상생성물의 에너지 수율과 질량수율은 각각 60.8%, 386.4 g-oil/100 g-sawdust를 얻었다. 아세톤을 사용한 톱밥의 용매 열분해 반응시 생성된 주요물질은 4-methyl-3-pentene-2-one, 1,3,5-trimethylbezene, 2,6-dimethyl-2,5-heptadiene-4-one, 3-methyl-2-cyclopenten-1-one 등과 같은 케톤화합물로서 고옥탄가의 액체 연료로 사용 가능한 물질인 것으로 판단되었다.

Sawdust, produced as an wood by-product, is usable biomass as liquid fuels if decomposed to monomer unit, because the chemical structure are similar to high octane materials found in gasoline. In this study, parameters of thermochemical degradation by acetone-solvolysis reaction of sawdust such as the effect of reaction temperature, reaction time and type of solvent on conversion yield and degradation products were investigated. The liquid products by acetone-solvolysis from sawdust produced various kind of ketone, phenol and furan compounds. The optimum sawdust conversion was observed to be 88.7% at $350^{\circ}C$, 40min. Combustion heating value of liquid products from thermochemical conversion processes was as high as 7,824 cal/g. The energy yield and mass yield in acetone-solvolysis of sawdust was 60.8% and 36.4 g-oil/100g-sawdust after 40 min of reaction at $350^{\circ}C$, respectively. The major components of the acetone-solvolysis products, that could be used as liquid fuel, were 4-methyl-3-pentene-2-one, 1,3,5-trimethylbezene, 2,6-dimethyl-2,5-heptadiene-4-one, 3-methyl-2-cyclopenten-1-one as ketone compounds.

키워드

참고문헌

  1. Ministry of Trade Industry & Energy Korea Energy Economics Institute, Year of book of Energy Statistics(2013).
  2. Praveen, P. and Loh, K. C., "Kinetics modeling of two phase biodegradation in a hollow fiber membrane bioreactor," Sep. Purif. Technol., 122, 350-358(2014). https://doi.org/10.1016/j.seppur.2013.11.033
  3. Modenbach, A. A. and Nokes, S. E., "Enzymatic hydrolysis of biomass at high-solids loadings-A review," Biom. Bioenergy, 56, 526-544(2013). https://doi.org/10.1016/j.biombioe.2013.05.031
  4. Stefanidis, S. D., Kalogiannis, K. G., Iliopoulou, E. F., Michailof, C. M.,, Pilavachi, P. A. and Lappas, A. A., "A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin," J. Anal. Appl. Pyrol., 105, 143-150(2014). https://doi.org/10.1016/j.jaap.2013.10.013
  5. Demirbas, A. "Yields of Oil Products from Thermochemical Biomass Conversion Processes," Energy Convers. Mgmt., 39 (7), 685-690(1998). https://doi.org/10.1016/S0196-8904(97)00047-2
  6. Bridgwater, A. V., "Review of fast pyrolysis of biomass and product upgrading," Biom. Bioenergy, 38, 68-94(2012). https://doi.org/10.1016/j.biombioe.2011.01.048
  7. Poitrat E. and Gosse, G., "Catalytic fast pyrolysis of biomass impregnated with $K_3PO_4$ to produce phenolic compounds: Analytical Py-GC/MS study," J. Anal. Appl. Pyrol., 104, 139-145(2013). https://doi.org/10.1016/j.jaap.2013.08.011
  8. Fan, S. P., Zakaria, S., Chia, C. H., Jamaluddin, F., Nabihah, S., Liew, T. K. and Pua, F. L., "Comparative studies of products obtained from solvolysis liquefaction of oil palm empty fruit bunch fibres using different solvents," Bioresour. Technol., 102(3), 3521-3526(2011). https://doi.org/10.1016/j.biortech.2010.11.046
  9. Lee, J. J., Yoon, S. W. and Lee, B. H., "Production of fuels by solvolysis from cellulose," J. Kor. Soc. Environ. Eng., 26 (12), 1312-1318(2004).
  10. Park, D. K., Seo, M. W., Goo, J. H., Kim, S. D., Lee, S. H. Lee, J. G. and Song, B. H. "Pyrolysis Characteristics of Sawdust and Rice Husk," J. Kor. Ind. Eng. Chem., 18, 415- 423(2007).
  11. Mohan, D., Pittman, C. and P. Steele, "Pyrilysis of wood/ biomass for bio-oil : A critical review," Energy Fuels, 20 (3), 848-889(2006). https://doi.org/10.1021/ef0502397
  12. Andre, J. P. "Cell and Molecular Biology of Wood Formation," BIOS Scientific Publisher., pp. 387-395(2000).
  13. Demirbas, A., "Mechanisms of Liquefaction and Pyrolysis Reaction of Biomass," Energy Convers. Mgmt., 41(6), 633- 6463(2000). https://doi.org/10.1016/S0196-8904(99)00130-2
  14. Donald L. K. and Emert, G. H., "Biomass for Renewable Energy, Fuels, and Chemicals," Academic Press, pp. 143- 152(1998).
  15. Wikipedia, Phenol, http://en.wikipedia.org/wiki/Phenol(2014).
  16. Wikipedia, Furan, http://en.wikipedia.org/wiki/Furan(2014).