DOI QR코드

DOI QR Code

저탁도 해수원수 특성에 적합한 응집 - 여과 공정의 최적화

Optimization of Coagulation and Media Filtration Process for Low Turbidity Seawater

  • 손동민 (부경대학교 환경공학과) ;
  • 조명흠 (부경대학교 환경공학과) ;
  • 김정숙 (동서대학교 에너지환경공학과) ;
  • 강임석 (부경대학교 환경공학과)
  • Son, Dong-Min (Department of Environmental Engineering, Pukyong National University) ;
  • Jo, Myeong-Heum (Department of Environmental Engineering, Pukyong National University) ;
  • Kim, Jeong-Sook (Department of Energy&Environmental Engineering, Dongseo University) ;
  • Kang, Lim-Seok (Department of Environmental Engineering, Pukyong National University)
  • 투고 : 2013.07.04
  • 심사 : 2014.04.02
  • 발행 : 2014.04.30

초록

본 연구는 RO 해수담수화 전처리 공정으로써 응집 및 여과공정에 대하여 수행되었다. RO 시스템은 충분하고 안정적인 전처리를 통하여 RO 막오염을 완화 할 수 있는 우수한 수질을 공급할 수 있어야 한다. 본 실험은 RO 막 공정의 전처리로서 다양한 응집제 주입량, 응집 교반 강도 및 시간, 탁도, 여과속도 실험 조건을 사용하여 응집과 여과공정의 효과를 조사하기 위하여 수행되었다. 본 연구 결과 적합한 RO 공급수로 적절한 SDI 값을 나타내기 위한 최적 전처리 조건은 응집 pH 6.5, 탁도 4 NTU 이상 그리고 여재 충진 높이가 550 mm 이상인 것으로 나타났다. 그러나 응집교반 강도, 응집제 주입농도와 여과속도는 여과효율에 비교적 큰 영향을 미치지 않은 것으로 나타났다.

This research is focused on coagulation and sand filtration process as a pretreatment of RO seawater desalination. RO systems require sufficient and reliable pretreatment process to produce superior quality of RO feedwater that can mitigate RO membrane fouling. This experiment was conducted to investigate the effectiveness of coagulation and filtration process under various experimental conditions including different coagulant dose, flocculation mixing intensity and time, turbidity, and filtration rate. The experimental results showed that the optimum pretreatment conditions resulting in lower SDI value suitable for RO feedwater were coagulation pH 6.5, raw water turbidity greater than 4 NTU, and media bed depth greater than 550 mm. However, flocculation mixing intensity, coagulant dose, and filtration rate relatively affected little on the filtration efficiency.

키워드

참고문헌

  1. Bates, W. T. and Cuozzo, R., Integrated membrane systems. Hydranautics Available from: http://www.membranes.com/ docs/papers/01_ims.pdf (accessed 17.05.08.)(2000).
  2. Brehant, A., Bonnelye, V. and Perez, M., "Assessment of ultrafiltration as a pretreatment of reverse osmosis membranes for surface seawater desalination," Water Sci. Technol.: Water Supply, 3(5-6), 437-445(2003).
  3. Nikolay, V., "Considerations for selection of seawater filtration pretreatment system," Desalination, 261, 354-364(2010). https://doi.org/10.1016/j.desal.2010.07.002
  4. Mitrouli, S. T., Karabelas, A. J., Yiantsios, S. G. and Kjolseth, P. A., "New granular materials for dual-media filtration of seawater: Pilot testing," Sep. Purific. Technol., 64(2), 147- 155(2009).
  5. Isaias, N. P., "Experience in reverse osmosis pretreatment," Desalination, 139, 57-64(2001). https://doi.org/10.1016/S0011-9164(01)00294-6
  6. Sauvet-Goichon, B., "Ashkelon desalination plant-a successful challenge," Desalination, 203, 75-81(2007). https://doi.org/10.1016/j.desal.2006.03.525
  7. Bonnelye, V., Sanz, M. A., Durand, J. P., Plasse, L., Gueguen, F. and Mazounie, P., "Reverse osmosis on open intake seawater: pre-treatment strategy," Desalination, 167, 191-200 (2004). https://doi.org/10.1016/j.desal.2004.06.128
  8. Reverter, J. A., Talo, S. and Alday, J., "Las Palmas III - the success story of brine staging," Desalination, 138, 207-217 (2001). https://doi.org/10.1016/S0011-9164(01)00266-1
  9. Rybar, S., Vodnar, M., Vartolomei, F. L., Mendez, R. L. and Ruano, J. B. L., "Experience with Renewable Energy Source and SWRO Desalination in Gran Canaria," SP05-100. International Desalination Association World Congress. Available from: http://www.membranes.com/docs/papers/New%20 Folder/Soslaires%20Canarias%20Desalination%20Plant.pdf (accessed 25.05.08.)(2005).
  10. Bu-Rashid, K. A. and Czolkoss, W., "Pilot tests of multipore UF membrane at Addur SWRO desalination plant," Bahrain. Desalination, 203, 229-242(2007). https://doi.org/10.1016/j.desal.2006.04.010
  11. Chua, K. T., Hawlader, M. N. A. and Malek, A., "Pretreatment of seawater: results of pilot trials in Singapore," Desalination, 159, 225-243(2003). https://doi.org/10.1016/S0011-9164(03)90075-0
  12. Amirtharajah, A. and Mills, K. M., "Rapid-Mix Design for Mechanisms of Alum Coagulation," J. Am. Water Works Assoc., 74(4), 210-216(1982).
  13. Ando, M., Ishiara, S., Iwahori, H. and Tada, N., "Peculiar or Unexpected Behavior of Silt Density Index of Pretreated Seawater for RO Desalination," Proceedings of IDA World Congress, Bahamas BAH03-071(2003).
  14. Mosset, A., Bonnelye, V., Petry, M. and Sanz, M. A., "The sensitivity of SDI analysis: from RO feed water to raw water," Desalination, 222, 17-23(2008). https://doi.org/10.1016/j.desal.2007.01.125
  15. Hydranautics, "Chemical Pretreatment for RO and NF," Technical Application Bulletin No. 111, Rev. B Available from: Available from: http://www.membranes.com/docs/tab/TAB111.pdf(2003).
  16. Kim, S., Lee, I. S., Kim, K. J., Shon, D. M. and Kang, L. S., "Dual media filtration and ultrafiltration as pretreatment options of low-turbidity seawater reverse osmosis processes," Desalination Water Treat., 33, 329-336(2011). https://doi.org/10.5004/dwt.2011.2661
  17. Zouboulis, A., Traskas, G. and Samaras, P., "Comparison of single and dual media filtration in a full-scale drinking water treatment plant," Desalination, 213, 334-342(2007). https://doi.org/10.1016/j.desal.2006.02.102
  18. Standard Test Method for Silt Density Index (SDI) of water, D 4189-95 ASTM.
  19. Wilf, M. and Bartels, C., "Integrated membrane desalination systems-current status and projected development," Hydranautics Available from: http://www.membranes.com/docs/papers/ New%20Folder/Abstract%20for%20Tianjin%20-%20Hydrana utics.pdf(2006).
  20. Smoluchowski, M., "Versuch einer mathematischen Theorie der Koagulation skinetic Kolloider Losunger," Zeit. Phys. Chem., 92, 129-168(1917).
  21. Amirtharajah, A. and O'Melia, C. R., "Coagulation process: destabilization, mixing, and flocculation," In Water Quality and Treatment, 4th Ed., McGraw-Hill, NY(1990).