DOI QR코드

DOI QR Code

A Effect of Heavy Metal to Toxicity of Triclosan Focused on Vibrio fischeri Assay

Triclosan의 독성에 중금속이 미치는 영향 - V. fischeri Assay 관련 내용 중심으로 -

  • Kim, Ji-Sung (Department of Construction Environment Engineering, University of Science and Technology) ;
  • Kim, Il-Ho (Department of Construction Environment Engineering, University of Science and Technology) ;
  • Lee, Woo-Mi (Geum River Basin Environmental Office) ;
  • Lee, Hye-In (Environmental Engineering Research Division, Korea Institute of Construction Technology) ;
  • Kim, Seok-Gu (Department of Construction Environment Engineering, University of Science and Technology)
  • 김지성 (과학기술연합대학원대학교 건설환경공학과) ;
  • 김일호 (과학기술연합대학원대학교 건설환경공학과) ;
  • 이우미 (금강유역환경청) ;
  • 이혜인 (한국건설기술연구원 수자원.환경 연구본부 환경연구실) ;
  • 김석구 (과학기술연합대학원대학교 건설환경공학과)
  • Received : 2013.11.15
  • Accepted : 2014.02.17
  • Published : 2014.03.31

Abstract

The purpose of this study is to evaluate effect of heavy metals (i.e., $Cu^{2+}$, $Zn^{2+}$, $Cr^{6+}$, $Cd^{2+}$, $Hg^{2+}$, and $Pb^{2+}$) to toxicity of Triclosan as binary mixture. The individual toxicity and combined toxic effects of Triclosan with heavy metals were evaluated by Vibrio fischeri assay. In individual toxicity, the $Hg^{2+}$ was found to be most toxic followed by Triclosan, $Pb^{2+}$, $Cr^{6+}$, $Cu^{2+}$, $Zn^{2+}$, and $Cd^{2+}$, respectively. To evaluate combined toxic effect, correlation analysis of 'predicted value' calculated by Concentration addition (CA) model and Independent action (IA) model with 'experimental value' were performed based on the toxicity of individual compound. As a result, all of the combinations showed that IA model were more correlated with experimental value than CA model. On the basis of the median effect concentration of combination ($EC_{50mix}$) predicted by IA model, experimental $EC_{50mix}$ of Triclosan + Cu, Triclosan + Zn, Triclosan + Pb, Triclosan + Hg, Triclosan + Cd, and Triclosan + Cr were 191%, 226%, 138%, 137%, 209%, and 138% of $EC_{50mix}$ predicted by IA model, respectively, indicating that all of the combinations produced antagonistic effect.

본 연구에서는 합성 항균제로 이용되는 Triclosan이 $Cu^{2+}$, $Zn^{2+}$, $Cr^{6+}$, $Cd^{2+}$, $Hg^{2+}$, $Pb^{2+}$ 등과 같은 중금속과 공존할 경우의 독성영향을 발광박테리아인 Vibrio fischeri를 이용하여 평가하였다. 우선, Triclosan과 상기 6종 중금속의 단일물질별 Vibrio fischeri에 대한 독성을 평가한 결과, $Hg^{2+}$의 독성이 가장 높았으며 뒤이어 Triclosan > $Pb^{2+}$ > $Cu^{2+}$ > $Cr^{6+}$ > $Zn^{2+}$ > $Cd^{2+}$순의 독성민감도가 나타났다. 각 물질의 독성평가결과를 바탕으로 Triclosan과 중금속 혼합물질의 독성작용분석을 위해 유사한 독성작용을 가정하여 독성치를 예측하는 Concentration Addition (CA)모델과 독립적인 독성작용을 가정하여 독성치를 예측하는 Independent Action (IA)모델에 대한 상관도분석을 실시하였다. 그 결과 Triclosan + Cu, Triclosan + Zn, Triclosan + Pb, Triclosan + Hg, Triclosan + Cd, 그리고 Triclosan + Cr 등 모든 조합에서 CA모델보다는 IA모델과 상관성이 높은 것으로 나타나 Triclosan과 대상 중금속들은 서로 독립적인 독성작용을 하는 것으로 나타났다. 한편 Triclosan과 중금속의 혼합독성영향은 IA모델로 예측된 $EC_{50mix}$기준으로 Triclosan + Cu, Triclosan + Zn, Triclosan + Pb, Triclosan + Hg, Triclosan + Cd, 그리고 Triclosan + Cr의 실측 $EC_{50mix}$이 IA모델로 예측한 농도보다 각각 191%, 226%, 138%, 137%, 209% 그리고 138%로 나타나, Triclosan과 시험 중금속이 공존하는 경우, 모두 길항작용이 나타나는 것으로 확인되었다.

Keywords

References

  1. Zuccato, E., Calamari, D., Natangelo, M. and Fanelli, R., "Presence of therapeutic drugs in the environment," Lancet., 355(9217), 1789-1790(2000). https://doi.org/10.1016/S0140-6736(00)02270-4
  2. Boyd, G. R., Palmeri, J. M., Zhang, S. and Grimm, D. A., "Pharmaceuticals and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs) in stormwater canals and Bayou St. John in New Orleans, Louisiana, USA," Sci. Total Environ., 333(1-3), 137-148(2004). https://doi.org/10.1016/j.scitotenv.2004.03.018
  3. Cargouët, M., Perdiz, D., Mouatassim-Souali, A., Tamisier-Karolak, S. and Levi, Y., "Assessment of river contamination by estrogenic compounds in Paris area (France)," Sci. Total Environ., 324(1-3), 55-66(2004). https://doi.org/10.1016/j.scitotenv.2003.10.035
  4. Ashton, D., Hilton, M. and Thomas, K. V., "Investigating environmental transport of human pharmaceuticals to streams in the United Kingdom," Sci. Total Environ., 333(1-3), 167-184(2004). https://doi.org/10.1016/j.scitotenv.2004.04.062
  5. Kim, S. D., Cho, J. W., Kim, I. S., Vanderford, B. J. and Snyder, S. A., "Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters," Water Res., 41(5), 1013-1021(2007). https://doi.org/10.1016/j.watres.2006.06.034
  6. Stasinakis, S. A., Gatidou, G., Mamais, D., Thomaidis, S. N. and Lekkas, D. T., "Occurrence and fate of endocrine disrupters in Greek sewage treatment plants," Water Res., 42 (6-7), 1796-1804(2008). https://doi.org/10.1016/j.watres.2007.11.003
  7. Benotti, M. J., Trenholm, R. A., Vanderford, B. J., Standford, B. D. and Snyder, S. A.. "Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water," Environ. Sci. Technol., 43, 597-603(2009). https://doi.org/10.1021/es801845a
  8. Farre, M., Asperger, D., Kantiani, L., Gonzalez, S., Petrovic, M. and Barcelo, D., "Assessment of the acute toxicity of Triclosan and methyl Triclosan in wastewater based on the bioluminescence inhibition of Vibrio fischeri," Anal. Bioanal. Chem., 390, 1999-2007(2008). https://doi.org/10.1007/s00216-007-1779-9
  9. Yoon, Y. M., Ryu, J. N., Oh, J. I., Choi, B. G. and Snyder, S. A., "Occurrence of endocrine disrupting compounds, pharmaceuticals, and personal care products in the Han River (Seoul, South Korea)," Sci. Total Environ., 408, 636-643 (2010). https://doi.org/10.1016/j.scitotenv.2009.10.049
  10. Dann, A. B. and Hontela, A., "Triclosan: environmental exposure, toxicity and mechanisms of action," J. Appl. Toxicol., 31, 285-311(2011). https://doi.org/10.1002/jat.1660
  11. Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B. and Buxton, H. T., "Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: a national reconnaissance," Environ. Sci. Technol., 36, 1202-1211(2002). https://doi.org/10.1021/es011055j
  12. Kinney, C. A., Furlong, E. T., Kolpin, D. W., Burkhardt, M. R., Steven, D., Zaugg, S. D., Werner, S. L., Bossio, J. P. and Benotti, M. J., "Bioaccumulation of pharmaceuticals and other anthropogenic waste indicators in earthworms from agricultural soil amended with biosolid or swine manure," Environ. Sci. Technol., 42(6), 8(2008).
  13. Foran, C. M., Bennett, E. R. and Benson, W. H.. "Developmental evaluation of a potential non-steroidal estrogen: Triclosan," Mar. Environ. Res., 50, 153-156(2000). https://doi.org/10.1016/S0141-1136(00)00080-5
  14. Ishibashi, H., Matsumura, N., Hirano, M., Matsuoka, M., Shiratsuchi, H., Ishibashi, Y., Takao, Y. and Arizono, K.. "Effects of Triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin," Aquat. Toxicol., 67(2), 167-179(2004). https://doi.org/10.1016/j.aquatox.2003.12.005
  15. Veldhoen, N., Skirrow, R. C., Osachoff, H., Wigmore, H., Clapson, D. J., Gunderson, M. P., van Aggelen, G. and Helbing, C. C., "The bactericidal agent Triclosan modulates thyroid hormone associated gene expression and disrupts postembryonic anuran development," Aquat. Toxicol., 80(3) 217-227(2006). https://doi.org/10.1016/j.aquatox.2006.08.010
  16. Crofton, K. M., Paul, K. B., De Vito, M. J. and Hedge, J. M., "Short term in vivo exposure to the water contaminant Triclosan: evidence for disruption of thyroxine," Environ. Toxicol. Pharmacol., 24(2), 194-197(2007). https://doi.org/10.1016/j.etap.2007.04.008
  17. Mezcua, M., Gomez, M. J., Ferrer, I., Aguera, A., Hernando, M. D. and Fernandez-Alba, A. R., "Evidence of 2,7/ 2,8-dibenzodichloro-p-dioxin as a photodegradation product of triclosan in water and wastewater samples," Anal. Chim. Acta., 524, 241-247(2004). https://doi.org/10.1016/j.aca.2004.05.050
  18. Gust, K. A., "Joint toxicity of cadmium and phenanthrene in the freshwater amphipod Hyalella azteca," Arch. Environ. Contam. Toxicol, 50, 7-13(2006) https://doi.org/10.1007/s00244-004-4163-1
  19. Wang, W., Lampi, M. A., Huang, X., Gerhardt, K., Dixon, D. G. and Greenberg, B. M., "Assessment of Mixture Toxicity of Copper, Cadmium, and Phenanthrenequinone to the Marine Bacterium Vibrio fischeri," Environ. Toxicol., 24, 166-177(2009). https://doi.org/10.1002/tox.20411
  20. Viguria, J. R., Irabienb, M. J., Yustab, I., Sotoc, J., Gomezc, J., Rodriguezd, P., Martinez-Madride, M., Irabiena, J. A. and Coz, A., "Physico-chemical and toxicological characterization of the historic estuarine sediments: A multidisciplinary approach," Environ. Int., 10(1), 41-46(2007).
  21. KSIISO, "Water quality-determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (luminescent bacteria test)-part3 : method using freeze-dried bacteria," KSIISO 11348:3(2009).
  22. Ren, S. and Frymier, P. D., "Toxicity of metals and organic chemicals evaluated with bioluminescence assays," Chemosphere, 58, 543-550(2005) https://doi.org/10.1016/j.chemosphere.2004.07.005
  23. Faust, M., Altenburger, R., Backhaus, T., Blanck, H., Boedeker, W., Gramatica, P., Hamer, V., Scholze, M., Vighi, M. and Grimme, L. H., "Joint algal toxicity of 16 dissimilarly acting chemicals is predictable by the concept of independent action," Aquat. Toxicol., 63(1), 43-63(2003). https://doi.org/10.1016/S0166-445X(02)00133-9
  24. Lopez-Roldan, R., Kazlauskaite, L., Ribo, J., Carme Riva, M., Gonzalez, S. and Cortina, J. L., "Evaluation of an automated luminescent bacteria assay for in situ aquatic toxicity determination," Sci. Total Environ., 440, 307-313(2012). https://doi.org/10.1016/j.scitotenv.2012.05.043
  25. Isidori, M., Lavorgna, M., Nardelli, A., Pascarella, L. and Parrella, A., "Toxic and genotoxic evaluation of six antibiotics on non-target organisms," Sci. Total Environ., 346(1-3), 87-98(2005). https://doi.org/10.1016/j.scitotenv.2004.11.017
  26. Martin, E. B., Mansfield, L. P., Smith, A. and Forsythe, S. J, "Inhibition of light emission from the bioluminescent bacterium Vibrio fischeri after exposure to Triclosan and related hygiene care products," Luminescence, 16, 29-32(2001). https://doi.org/10.1002/bio.602
  27. Tsiridis, V., Petala, M., Samaras, P., Hadjispyrou, S., Sakellaropoulos, G. and Kungolos, A., "Interactive toxic effects of heavy metals and humic acids on Vibrio fischeri," Ecotoxicol. Environ. Saf., 63, 158-167(2006). https://doi.org/10.1016/j.ecoenv.2005.04.005
  28. Cho, J. C., Park, K. J., Ihm, H. S., Park J. E., Kim, S. Y., Kang, I., Lee, K. H., Jahng, D., Lee, D. H. and Kim, S. J., "A novel continuous toxicity test system using a luminously modified freshwater bacterium," Biosens. Bioelectron., 20, 338-344(2004). https://doi.org/10.1016/j.bios.2004.02.001
  29. Gueguena, C., Gilbina, R., Pardosa, M. and Dominika, J., "Water toxicity and metal contamination assessment of a polluted river: the Upper Vistula River (poland)," Appl. Geochem., 19, 153-162(2004). https://doi.org/10.1016/S0883-2927(03)00110-0
  30. Son, Y. H, Lee, H. M., Ryu, J. K. and Rhu, H. I., "A study on biotoxicity assessment of toxic materials on Vibrio fischeri," Kor. J. Environ. Toxicol. 9(2), 41-50 (1994).
  31. Van der geest, H. G., Greve, G. D., Blivin, M. E., Kraak, M. H. S. and van Gestel, C. A. M., "Mixture toxicity of copper and diazinon to larvae of the mayfly judging additivity at different effect levels," Environ. Toxicol. Chem., 19, 2900-2905(2000). https://doi.org/10.1002/etc.5620191208
  32. Vettori, M. V., Goldoni, M., Caglieri, A., Poli, D., Folesani, G., Ceccatelli, S. and Mutti, A., "Antagonistic effects of methyl-mercury and PCB153 on PC12 cells after a combined and simultaneous exposure," Food Chem. Toxicol., 44, 1505-1512(2006). https://doi.org/10.1016/j.fct.2006.04.009