
Copyright 2014. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 8, No. 1, March 2014, pp. 34-42

Exploiting Standard Deviation of CPI to Evaluate Architectural
Time-Predictability

Wei Zhang* and Yiqiang Ding

Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA, USA

wzhang4@vcu.edu, dingy4@vcu.edu

Abstract
Time-predictability of computing is critical for hard real-time and safety-critical systems. However, currently there is no

metric available to quantitatively evaluate time-predictability, a feature crucial to the design of time-predictable proces-

sors. This paper first proposes the concept of architectural time-predictability, which separates the time variation due to

hardware architectural/microarchitectural design from that due to software. We then propose the standard deviation of

clock cycles per instruction (CPI), a new metric, to measure architectural time-predictability. Our experiments confirm

that the standard deviation of CPI is an effective metric to evaluate and compare architectural time-predictability for dif-

ferent processors.

Category: Embedded computing

Keywords: Performance; Reliability; Hard real-time systems; WCET analysis; Time-predictability

I. INTRODUCTION

Processor architectural design has traditionally focused

on improving average-case performance or energy effi-

ciency. However, for real-time systems, time-predictabil-

ity is the most important design consideration. Unfortunately,

many performance-enhancing architectural features of

today’s microprocessors, such as caches and branch pre-

dictions, are detrimental to time-predictability [1, 2]. As a

result, an estimation of worst-case execution time (WCET)

on modern microprocessors, which is crucial for hard

real-time and safety-critical systems, is very difficult, if

not impossible, to make [1, 2]. On the other hand, a time-

predictable processor with low performance may be inef-

fective or even useless. To achieve both time-predictabil-

ity and performance, researchers have proposed a time-

predictable design for microprocessors [2] with the goal

to achieve time-predictability (or WCET analyzeability)

while minimizing the impact on average-case perfor-

mance.

In the last two decades, researchers have proposed sev-

eral designs of time-predictable processors for real-time

systems. Colnaric and Halang [3] proposed a simple

asymmetrical multiprocessor architecture without dynamic

architectural features, such as pipelines and caches, for

hard real-time applications. Delvai et al. [4] designed a

scalable processor for embedded real-time applications,

which employed a simple 3-stage pipeline without cache

memory, and Edwards and Lee [5] proposed a precision

timed (PRET) machine. Yamasaki et al. [6] studied

instructions per cycle (IPC) control and prioritization of

multithreaded processors. Paolieri et al. [7] examined

time-predictable multicore architectures to support WCET

analyzability. Finally, Schoeberl [8] proposed time-pre-

Received 26 July 2013; Revised 18 December 2013; Accepted 10 February 2014

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2014.8.1.34 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Exploiting Standard Deviation of CPI to Evaluate Architectural Time-Predictability

Wei Zhang and Yiqiang Ding 35 http://jcse.kiise.org

dictable Java processor.

However, to the best of our knowledge, none of the

prior work has quantitatively evaluated time-predictabil-

ity. While (average-case) performance can be easily

assessed, most prior work on time-predictable design

either simply reported the worst-case performance through

measurement or analysis or just qualitatively explained

that the design was time-predictable by removing unde-

sirable architectural features. This is because, to the best

of our knowledge, there is no well-defined metric to eval-

uate time-predictability of microprocessors, and this has

fundamentally limited the advance of time-predictable

architectural design. The lack of a metric does not only

prevent designers from performing a quantitative com-

parison of different time-predictable designs in order to

select the better one, but also makes it impossible to

quantitatively analyze the trade-off between time-predict-

ability and performance since these two goals often con-

flict with each other.

To address this problem, this paper proposes to use the

standard deviation of cycles per instruction (CPI) to mea-

sure the time-predictability of different architectures.

Such a metric can quantitatively indicate the variation in

execution time of different architectural/microarchitec-

tural designs, and thus can provide useful insights for

engineers to make better design tradeoffs between perfor-

mance and time-predictability.

II. ARCHITECTURAL TIME-PREDICTABILITY

The execution time of a real-time task (or generally a

program) can be calculated by using Eq. (1), where T is

the execution time, N is the number of instructions, CPI

represents the clock cycles per instruction, and τ stands

for the clock cycle time. The computer architecture com-

munity has used this equation to evaluate the average-

case performance of microprocessors for decades, and we

can also use it explain the variation of the execution time.

In this equation, τ is fixed for each instruction, which is a

predictable quantity after the processor is designed and

implemented. In contrast, both N and CPI can vary sig-

nificantly, thus making it hard to achieve time-predict-

ability. Specifically, the number of instructions (N) can be

affected by both software and instruction set architecture

(ISA). Given an ISA, the number of instructions is mainly

determined by the software and its inputs, i.e., which

paths are executed at runtime. The CPI is affected by the

architectural/microarchitectural design. Usually in a pipe-

lined processor, different types of instructions take vari-

ous clock cycles, and even the same type of instructions

may take different clock cycles. For example, the laten-

cies of load instructions depend on whether they hit in the

cache or not.

T = N × CPI × τ (1)

Since our goal is to design time-predictable processors

(to support running real-time software), we should sepa-

rate the time variation caused by software and hardware.

For example, the inputs that are given, or the program

paths that are executed, should not be a concern for hard-

ware design. Prior work [2] seems to consider time-pre-

dictability of both the software and hardware as a single

problem, making it overly complicated, if not impossible,

to define a useful metric to specifically guide hardware

design for time-predictability. In this paper, we propose a

concept called architectural time-predictability (ATP) using

the definition below.

Definition 1 (Architectural time-predictability). Given

a number of instructions, architectural time-predictabil-

ity indicates the degree that the architecture under study

can provide predictable execution time.

In the above definition, the number of instructions of

the ISA is assumed to be known, which we believe is a

reasonable assumption to separate the time-predictability

of software and hardware. Once the ISA is defined, the

number of instructions executed is mostly affected by

software characteristics, features, and processes, includ-

ing the algorithm design, inputs, and compilation. More-

over, the number of instructions can be accurately obtained.

For hard real-time systems, the worst-case number of

instructions executed is needed to compute the WCET.

The worst-case number of instructions can be calculated

by state-of-the-art timing analysis techniques, such as the

implicit path enumeration technique (IPET) [9], although

the worst-case inputs may not be known without exhaus-

tive measurements, which are prohibitive.

III. STANDARD DEVIATION OF CPI

We propose to use the standard deviation of CPI to

quantitatively evaluate architectural time-predictability.

The averaged CPI has been used by the computer archi-

tecture community as a key measure of microarchitecture

effectiveness. However, as an aggregate metric, it cannot

indicate the variation of clock cycles for different instruc-

tions. As mentioned above, different instructions usually

vary in the amount of clock cycles they take on modern

processors, which is the fundamental reason why it is so

difficult to predict microarchitectural timing during WCET

analysis [1]. Therefore, we use the standard deviation of

CPI, which can clearly indicate the amount of variation

of microarchitectural timing, to measure architectural

time-predictability. In the ideal scenarion, there is 100%

time-predictability of the architecture (i.e., the standard

deviation of CPI is 0), and it becomes trivial to compute

the WCET. When we apply Eq. (1) to this ideal case, both

CPI and τ are known, and the worst-case number of

instructions is independent of hardware design and can be

calculated by using today’s timing analysis techniques,

Journal of Computing Science and Engineering, Vol. 8, No. 1, March 2014, pp. 34-42

http://dx.doi.org/10.5626/JCSE.2014.8.1.34 36 Wei Zhang and Yiqiang Ding

such as IPET [9].

In modern processors, different types of instructions

usually have different latencies. For example, an integer

addition instruction is usually faster than a load instruc-

tion. Thus the standard deviation of CPI needs to be clas-

sified into the standard deviation of CPI for each type of

instruction, rather than the standard deviation of CPI for

all instructions. For instance, in a time-predictable pro-

cessor, it is desirable for all the loads to take the same

number of clock cycles. However, it would be unwise or

unnecessary to require all loads to take the same amount

of clock cycles as additions and subtractions. Thus in our

evaluation, we classify the standard deviation for three

types of instructions, including loads, stores, and other

regular instructions.

IV. EVALUATION METHODOLOGY

We simulate a superscalar processor with different

architectural features to evaluate architectural time-pre-

dictability quantitatively based on the standard deviation

of CPI, by using SimpleScalar, a cycle-accurate simulator

[10]. We select six real-time benchmarks (Table 1) from

the Malardalen WCET benchmark suite [11] for our

experiments. Two of them are single-pathed, the other

four have multiple paths, and each of them is executed

with various inputs. We select three representative inputs

to represent the best case, the normal case, and the worst

case behavior observed (though it may not be the theoret-

ical best/worst case).

The basic configuration of the simulated processors is

listed in Table 2, including the parameters of the pipe-

lines, the caches, and the memory.

A. Architectures Evaluated

Caches and pipelines are two important architectural

features that can boost performance and are widely

employed in modern processors. Due to space limitations,

our experiments in this paper focus on evaluating archi-

tectural time-predictability of caches and pipelines. More

specifically, we quantitatively compare the architectural

time-predictability of four different architectures with fea-

tures as those given in Table 2.
● With caches, with pipelines: a processor with L1

instruction cache, L1 data cache, L2 cache, and pipe-

lines.
● With caches, without pipelines: a processor with L1

instruction cache, L1 data cache, and L2 cache, but

no pipeline.
● Without caches, with pipelines: a processor with no

cache and with pipelines.
● Without caches, without pipelines: a processor with

no cache and no pipeline.

V. EXPERIMENTAL RESULTS

A. Variation of CPI

Our first experiment quantifies the variation of CPI for

Table 1. Real-time benchmarks used in our experiments

Name Description Multi-path Input

fibcall Simple iterative Fibonacci calculation No Single

sqrt Square root function No Single

bsort100 Bubble sort program Yes Three

insertsort Insertion sort Yes Three

qsort-exam Non-recursive quick sort Yes Three

select Select the N-th largest number of an array Yes Three

Table 2. Basic configuration of the simulated processor

Parameter Value

Pipeline 2-IFQ, 32-RUU, 32-LSQ

Fetch speed, 2; decode width, 8; issue width, 8; commit width, 8

L1 I-cache 16K bytes, direct-map, 32 bytes block, 1 cycle latency

L1 D-cache 16K bytes, 4-associativity, 32 bytes block, 1 cycle latency

Unified L2 cache 256K bytes, 4-associativity, 64 bytes block, 6 cycles latency

Memory Unlimited, 100 cycles latency

Exploiting Standard Deviation of CPI to Evaluate Architectural Time-Predictability

Wei Zhang and Yiqiang Ding 37 http://jcse.kiise.org

different benchmarks on a regular processor with caches

and pipelines. Fig. 1 shows the variation of CPI of all the

instructions for the benchmarks insertsort and qsort-

exam, both with the worst-case inputs. In the rest of the

paper, all the experimental results are based on the worst-

case inputs, whose timing behaviors are particularly

important for hard real-time systems. The black line in

each figure shows the mean CPI of all instructions of the

benchmark. As we can see for both benchmarks, the CPIs

vary significantly, indicating bad time-predictability of

the default architecture (i.e., with caches and pipelines).

B. Time-Predictability Results

Our second experiment uses the standard deviation of

CPI to quantitatively study the effects of caches on the

architectural time-predictability of the processors with

pipelines, and the results are given in Table 3. As men-

tioned above, we classify the CPI for different types of

instructions, including loads, stores, and other regular

instructions. “All” in Table 3 basically represents all the

instructions, regardless of their types. As we can see in

Table 3, the averaged standard deviation of CPI for load

instructions, store instructions, and other regular instruc-

tions are 41.16, 16.58, and 29.79, respectively, with

caches, while it decreases to 0, 0.02, and 0.4, respectively

without caches. This quantitatively demonstrates the time

unpredictability caused by cache memories due to the

latencies of memory accesses depending on whether or

not there is a hit in the caches and which cache is hit. By

disabling all caches, the load instructions become per-

fectly predictable (i.e., the standard deviation of CPI is

0), as there is neither a cache hit nor miss. The store

instructions and other regular instructions also become

much more time-predictable without caches. However,

their standard deviation of CPI is not exactly 0. This is

due to the time variation caused by the pipelines, includ-

ing delays due to control and data hazards as well as vari-

ous queuing delays. For example, an instruction may

need to stay in the instruction window for longer time

because it has to wait for the preceding instruction to

commit.

It should be noted that the standard deviation of CPI of

all instructions does not reveal architectural time-predict-

ability accurately as mentioned earlier. As can be seen in

Table 3, the averaged standard deviation of CPI of all

instructions with caches is actually smaller than that

without caches. This is because the majority of memory

accesses with caches result in cache hits, making the

latencies of most loads/stores close to those of other regu-

lar instructions. This leads to lower standard deviations

when compared to that without caches, in which case the

loads/stores are guaranteed to miss and thus have longer

latencies than other regular instructions, resulting in a

higher standard deviation.

Table 4 compares the mean and the standard deviation

of CPI for non-pipelined processors with and without

caches. A similar trend can be observed where disabling

caches leads to better time-predictability. Moreover, we

observe that the standard deviations of CPI of both stores

and other regular instructions become 0 without pipelines,

indicating that disabling pipelines can further improve

time-predictability.

Although both caches and pipelines are detrimental to

time-predictability, due to the quantitative nature of our

evaluation, we observe that caches can compromise the

architectural time-predictability much more than pipe-

lines. This is due to a higher variation of the standard

deviation of CPI for each type of instructions between the

architectures with caches and without caches when com-

pared to that between the architectures with pipelines and

without pipelines (Tables 3 and 4). This may also quanti-

tatively explain why the timing analysis of caches is gen-

erally more complex and harder to perform than that of

pipelines [1].

Fig. 1. The variation of cycles per instruction (CPI) of all the
instructions for the benchmarks (a) insertsort and (b) qsort-exam
both with the worst-case input.

Journal of Computing Science and Engineering, Vol. 8, No. 1, March 2014, pp. 34-42

http://dx.doi.org/10.5626/JCSE.2014.8.1.34 38 Wei Zhang and Yiqiang Ding

C. Performance Results

Although architectural time-predictability is degraded

by using caches and pipelines, the average-case perfor-

mance improves with the use of both. As shown in

Table 5, the performance of all the benchmarks is best on

the architecture with both caches and pipelines and is

worst on the architecture without both caches and pipe-

lines. The former is high-performance but not time-pre-

dictable, whereas the latter is time-predictable but not

high-performance. Among these four architectures, the

one with pipelines but without caches seems to provide

high time-predictability with adequate performance, bet-

ter than that without both caches and pipelines. By com-

Table 3. The mean and standard deviation of cycles per instruction for all benchmarks on architectures with the pipelines, with and
without caches

Benchmark
all ld st reg

Mean SD Mean SD Mean SD Mean SD

With the caches (with the pipelines)

fibcall 12.36 27.27 27.55 49.37 7.57 13.57 15.09 31.54

sqrt 11.82 25.77 21.71 42.12 8.05 15.75 12.93 27.28

bsort100-best 13.01 27.18 19.26 37.47 7.91 14.67 14.61 29.38

bsort100-normal 25.24 39.55 37.24 46.62 13.07 26.42 28.79 41.79

bsort100-worst 25.24 39.55 37.23 46.62 13.07 26.42 28.78 41.78

insertsort-best 12.69 28.05 34.73 55.67 7.691 14.31 15.52 32.30

insertsort-normal 12.11 26.15 24.32 45.37 7.72 14.13 14.08 29.07

insertsort-worst 11.41 23.78 18.49 37.13 7.75 13.88 12.63 25.41

qsort-exam-best 12.01 25.39 20.86 40.29 7.72 13.88 13.45 27.36

qsort-exam-normal 11.98 25.16 20.09 39.04 7.72 13.82 13.35 27.00

hline qsort-exam-worst 13.09 24.73 13.63 26.63 11.17 19.89 13.13 24.50

select-best 11.53 24.07 17.67 35.01 7.99 15.04 12.64 25.71

select-normal 11.61 24.30 18.05 35.61 7.99 15.06 12.78 26.05

select-worst 12.03 25.56 20.5 39.25 8.03 15.36 13.59 27.96

Average 14.01 27.61 23.67 41.16 8.82 16.58 15.81 29.79

Without the caches (with the pipelines)

fibcall 113.60 27.98 205 0 105 0.02 105.07 0.26

sqrt 116.06 31.31 205 0 105 0.02 105.08 0.27

bsort100-best 120.76 36.27 205 0 105 0.02 105.25 0.43

bsort100-normal 123.12 38.29 205 0 105 0.02 105.35 0.66

bsort100-worst 123.12 38.30 205 0 105 0.02 105.35 0.66

insertsort-best 111.34 24.33 205 0 105 0.02 105.05 0.22

insertsort-normal 113.88 28.38 205 0 105 0.02 105.09 0.28

insertsort-worst 116.46 31.76 205 0 105 0.02 105.12 0.33

qsort-exam-best 116.93 32.31 205 0 105 0.02 105.15 0.41

qsort-exam-normal 117.48 32.94 205 0 105 0.02 105.16 0.42

qsort-exam-worst 131.81 44.09 205 0 105 0 105.30 0.54

select-best 117.99 33.51 205 0 105 0.02 105.16 0.40

select-normal 117.74 33.23 205 0 105 0.02 105.15 0.40

select-worst 116.17 31.40 205 0 105 0.02 105.13 0.37

Average 118.32 33.15 205 0 105 0.02 105.17 0.40

Exploiting Standard Deviation of CPI to Evaluate Architectural Time-Predictability

Wei Zhang and Yiqiang Ding 39 http://jcse.kiise.org

parison, the architecture with caches but without pipelines

can generally provide good performance, but time-pre-

dictability is inadequate. Moreover, architectural innova-

tions are needed to keep high-performance features that

do not affect time-predictability and to design new fea-

tures that are time-predictable and can also boost perfor-

mance.

VI. RELATED WORK

Recently, the real-time and embedded computing com-

munity has shown interest in defining a metric of time-

predictability due to the importance of studying time-pre-

dictability quantitatively. Thiele and Wilhelm [2] defined

time-predictability as a pessimistic WCET analysis and

Table 4. The mean and standard deviation of cycles per instruction for all benchmarks on architectures without the pipelines, with and
without caches

Benchmark
all ld st reg

Mean SD Mean SD Mean SD Mean SD

With the caches (without the pipelines)

fibcall 14.15 30.31 22.33 44.65 15.44 31.46 10.84 24.11

sqrt 13.61 29.39 18.38 38.12 15.82 32.39 10.45 23.14

bsort100-best 11.27 24.28 11.31 24.34 15.4 31.38 8.58 17.75

bsort100-normal 11.67 25.24 12.83 27.99 15.22 31.07 8.82 18.54

bsort100-worst 11.27 24.28 11.31 24.34 15.4 31.39 8.58 17.75

insertsort-best 14.58 31.12 27.29 50.57 15.82 32.11 11.15 24.83

insertsort-normal 13.46 29.06 19.38 40.7 15.6 31.73 10.21 22.54

insertsort-worst 12.2 26.52 14.93 33.1 15.29 31.2 9.18 19.66

qsort-exam-best 13.09 28.35 17.29 36.89 15.42 31.42 10.09 22.2

qsort-exam-normal 12.95 28.05 16.69 35.8 15.35 31.29 10.05 22.09

qsort-exam-worst 11.11 24.47 12.72 27.19 12.56 28.42 10.26 22.63

select-best 12.57 27.21 14.53 31.23 15.43 31.58 9.85 21.61

select-normal 12.69 27.47 14.83 31.78 15.46 31.64 9.97 21.93

select-worst 13.39 28.85 16.62 35.03 15.67 31.99 10.6 23.56

Average 12.71 27.47 16.46 34.41 15.28 31.36 9.9 21.59

Without the caches (without the pipelines)

fibcall 163.98 49.19 205 0 205 0 105 0

sqrt 158.52 49.88 205 0 205 0 105 0

bsort100-best 155.13 50 205 0 205 0 105 0

bsort100-normal 155.35 50 205 0 205 0 105 0

bsort100-worst 155.12 50 205 0 205 0 105 0

insertsort-best 162.89 49.38 205 0 205 0 105 0

insertsort-normal 159 49.84 205 0 205 0 105 0

insertsort-worst 155.06 50 205 0 205 0 105 0

qsort-exam-best 157.31 49.95 205 0 205 0 105 0

qsort-exam-normal 156.58 49.98 205 0 205 0 105 0

qsort-exam-worst 157.29 49.95 205 0 205 0 105 0

select-best 155.78 50 205 0 205 0 105 0

select-normal 156.04 49.99 205 0 205 0 105 0

select-worst 157.87 49.92 205 0 205 0 105 0

Average 157.57 49.86 205 0 105 0 105 0

Journal of Computing Science and Engineering, Vol. 8, No. 1, March 2014, pp. 34-42

http://dx.doi.org/10.5626/JCSE.2014.8.1.34 40 Wei Zhang and Yiqiang Ding

best-case execution time (BCET) analysis, and Grund

[12] defined time-predictability as the relation between

BCET and WCET and argued that it should be an inher-

ent system property. Grund et al. [13] then proposed a

template for predictability definitions and refined the def-

inition into state-induced time-predictability (SIP) and

input-induced time-predictability. Kirner and Puschner

[14] formalized a universal definition of time-predictabil-

ity by combining WCET analyzeability and stability of

the system. However, in all the above work, except for

that of Grund [12] and Grund et al. [13], the calculation

for time-predictability is still dependent on the computa-

tion of WCET. Since WCET estimation is usually pessi-

mistic and there is no standard way to compute it (though

different methods to derive WCET, such as abstract inter-

pretation and static cache simulation do exist), any time-

predictability metric relying on WCET analysis is likely

to be inaccurate and would be difficult to be standardized

in practice.

Moreover, in all the above work, except again for that

of Grund [12] and Grund et al. [13], the definition for

time-predictability does not separate the time variation

caused by software and hardware, making it overly com-

plicated to derive a time-predictable metric that can

effectively guide the architectural design. While Grund

[12] and Grund et al. [13] proposed SIP to separate the

timing uncertainty between hardware and software, the

metric they proposed to evaluate SIP needs to exhaus-

tively find the maximum and minimum execution time of

all different states, and this may not be computationally

feasible. Also, no quantitative results are given in their

study. In contrast, this paper proposes a metric to effi-

ciently assess architectural time-predictability with a

quantitative evaluation of architectural time-predictabil-

ity on statically-scheduled processors with different

architectural features.

Recently, Ding and Zhang [15] proposed to use a quan-

titative architectural time-predictability factor (ATF).

Compared to ATF, which can only quantitatively show

the ATP of the whole processor, the standard deviation of

CPI can provide the ATP for various microarchitectural

components, such as caches and pipelines. Thus, we can

quantitatively understand the impact of different microar-

chitectural components on ATP by using the standard

deviation of CPI for different types of instructions, a fea-

ture which is not available in ATF. Therefore, the stan-

dard deviation of CPI can provide useful insights for

engineers to design and implement new architectures

with better time-predictability.

VII. CONCLUSION

In this paper, we present the concept of architectural

time-predictability to separate that of hardware design

from that of software design. We then propose a new met-

ric to evaluate the architectural time-predictability that

uses the standard deviation of the clock CPI. Our prelimi-

nary evaluation demonstrates that the proposed metric

can quantitatively measure time-predictability of proces-

sors with different architectural features, such as caches

and pipelines.

Table 5. The total execution cycles of all the benchmarks on all the four architectures studied

Benchmark
With the pipeline Without the pipeline

With the cache Without the cache With the cache Without the cache

fibcall 27680 692501 97952 1135420

sqrt 35055 846101 115142 1341100

bsort100-best 31809 1059701 123627 1646080

bsort100-normal 35649 1142501 128719 1772220

bsort100-worst 35657 1142901 128749 1772740

insertsort-best 27877 658901 96048 1073140

insertsort-normal 29132 771901 103852 1227190

insertsort-worst 29831 934701 114002 1449230

qsort-exam-best 34356 885201 115936 1392355

qsort-exam-normal 35649 921701 119337 1395045

qsort-exam-worst 36617 977301 130802 1443080

select-best 34790 846701 113333 1336530

select-normal 34850 959501 119225 1465870

select-worst 35371 955801 120122 1488785

Exploiting Standard Deviation of CPI to Evaluate Architectural Time-Predictability

Wei Zhang and Yiqiang Ding 41 http://jcse.kiise.org

The standard deviation of CPI can be used to quantita-

tively guide the design of time-predictable processors. In

our future work, we plan to use the standard deviation of

CPI to evaluate time-predictability of different architec-

tures, for example branch prediction, multicore designs,

etc. Moreover, we intend to use this new metric to quanti-

tatively trade off time-predictability with performance,

energy, and cost for real-time systems.

ACKNOWLEDGMENTS

This work was funded in part by the United States

National Science Foundation (NSF) grant (No. CCF

1063645).

REFERENCES

1. R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thes-

ing, D. Whalley, … P. Stenstrom, “The worst-case execu-

tion time problem: overview of methods and survey of

tools,” ACM Transactions on Embedded Computing Sys-

tems, vol. 7, no. 3, article no. 36, 2008.

2. L. Thiele and R. Wilhelm, “Design for time-predictability,”

in Design of Systems with Predictable Behaviour, Dagstuhl,

Germany: Internationales Begegnungs- und Forschungszen-

trum für Informatik, 2004.

3. M. Colnaric and W. A. Halang, “Architectural support for

predictability in hard real time systems,” Control Engineer-

ing Practice, vol. 1, no. 1, pp. 51-57, 1993.

4. M. Delvai, W. Huber, P. Puschner, and A. Steininger, “Pro-

cessor support for temporal predictability: the SPEAR design

example,” in Proceedings of the 15th Euromicro Conference

on Real-Time Systems, Porto, Portugal, 2003, pp. 169-176.

5. S. A. Edwards and E. A. Lee, “The case for the precision

timed (PRET) machine,” in Proceedings of the 44th annual

Design Automation Conference, San Diego, CA, 2007, pp.

264-265.

6. N. Yamasaki, I. Magaki, and T. Itou, “Prioritized SMT archi-

tecture with IPC control method for real-time processing,” in

Proceedings of the 13th IEEE Real Time and Embedded

Technology and Applications Symposium, Bellevue, WA,

2007, pp. 12-21.

7. M. Paolieri, E. Quinones, F. J. Cazorla, G. Bernat, and M.

Valero, “Hardware support for WCET analysis of hard real-

time multicore systems,” in Proceedings of the 36th Annual

International Symposium on Computer Architecture, Austin,

TX, 2009, pp. 57-68.

8. M. Schoeberl, “Time-predictable computer architecture,”

EURASIP Journal on Embedded Systems, vol. 2009, article

no. 2, 2009.

9. Y. T. S. Li and S. Malik, “Performance analysis of embed-

ded software using implicit path enumeration,” in Proceed-

ings of the ACM SIGPLAN Workshop on Languages,

Compilers, and Tools for Real-Time Systems, Montreal, Can-

ada, 1995, pp. 88-98.

10. SimpleScalar, http://www.simplescalar.com.

11. J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The

Malardalen WCET benchmarks: past, present and future,” in

Proceedings of the 10th International Workshop on Worst-

Case Execution Time Analysis, Brussels, Belgium, 2010, pp.

136-146.

12. D. Grund, “Towards a formal definition of timing predict-

ability,” in Proceedings of Workshop on Reconciling Perfor-

mance with Predictability, Grenoble, France, 2009.

13. D. Grund, J. Reineke, and R. Wilhelm, “A template for pre-

dictability definitions with supporting evidence,” in Bring-

ing Theory to Practice: Predictability and Performance in

Embedded Systems, Wadern, Germany: Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, pp. 22-31, 2011.

14. R. Kirner and P. Puschner, “Time-predictable computing,” in

Proceedings of the 8th IFIP WG 10.2 International Work-

shop on Software Technologies for Embedded and Ubiqui-

tous Systems, Waidhofen/Ybbs, Austria, 2010, pp. 23-24.

15. Y. Ding and W. Zhang, “Architectural time-predictability

factor (ATF): a metric to evaluate time predictability of pro-

cessors,” ACM SIGBED Review, vol. 9, no. 4, pp. 6-15,

2012.

Journal of Computing Science and Engineering, Vol. 8, No. 1, March 2014, pp. 34-42

http://dx.doi.org/10.5626/JCSE.2014.8.1.34 42 Wei Zhang and Yiqiang Ding

Wei Zhang

Dr. Wei Zhang is a tenured associate professor in Electrical and Computer Engineering at Virginia
Commonwealth University. Dr. Wei Zhang received his Ph.D. from Pennsylvania State University in 2003.
From August 2003 to July 2010, Dr. Zhang worked as an assistant professor and then as a tenured-associate
professor at Southern Illinois University Carbondale. His research interests are in embedded and real-time
computing systems, computer architectures, compilers, and low-power systems. Dr. Zhang has received the
2009 SIUC Excellence through Commitment Outstanding Scholar Award for the College of Engineering, and
the 2007 IBM Real-time Innovation Award. Dr. Zhang has received 5 research grants from the National
Science Foundation. In addition, his research and educational efforts have been supported by industry,
including leading IT companies such as IBM, Intel, Motorola, and Altera. Dr. Zhang has published more than
100 papers in refereed journals and conference proceedings. He is a senior member of IEEE, and an associate
editor of the Journal of Computing Science and Engineering. He has served as a member of the organizing
and program committees for several IEEE/ACM international conferences and workshops.

Yiqiang Ding

Yiqiang Ding is currently a Ph.D. student in Electrical and Computer Engineering at Virginia Commonwealth
University. He received the B.S. degree of computer science in 2002 and the M.S. degree of computer
engineering in 2005 from the Beijing University of Posts and Telecommunications in China. He worked in the
Motorola China Design Center as a system engineer from 2005 to 2007. His research interests are in
embedded and real-time computing systems, computer architectures, and compilers.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 900
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

