DOI QR코드

DOI QR Code

Thermodynamic Performance Characteristics of Organic Rankine Cycle (ORC) using LNG Cold Energy

LNG 냉열을 이용하는 유기랭킨사이클(ORC)의 열역학적 성능 특성

  • Kim, Kyoung Hoon (Dept. of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • Ha, Jong Man (R&D Division, Korea Gas Corporation) ;
  • Kim, Kyung Chun (School of Mechanical Engineering, Pusan National University)
  • Received : 2014.02.23
  • Accepted : 2014.04.22
  • Published : 2014.04.30

Abstract

In this work a thermodynamic performance analysis is carried out for a combined cycle consisted of an organic Rankine cycle (ORC) and a LNG cycle. The combined system uses a low grade waste heat in the form of sensible energy and the LNG cold energy is used for power generation as well as for heat sink. The effects of the key parameters of th system such as turbine inlet pressure, condensation temperature and source temperature on the characteristics of system are throughly investigated. The simulation results show that the thermodynamic performance of the combined system can be significantly improved compared to the normal ORC which is not using the LNG cold energy.

본 논문에서는 유기랭킨사이클과 LNG 사이클로 구성된 복합사이클의 열역학적 성능 해석을 수행한다. 이 복합사이클에서는 현열 형태의 저등급 폐열을 사용하며 LNG 냉열은 열싱크 뿐 아니라 동력 생산에도 사용된다. 시스템의 성능에 대한 터빈입구압력, 응축온도, 열원온도 등 주 파라미터들의 영향을 상세하게 분석한다. 시뮬레이션 결과는 이 복합시스템은 LNG 냉에너지를 사용하지 않은 일반의 ORC에 비해 현저하게 성능이 개선될 수 있음을 보여준다.

Keywords

References

  1. Tagliafico G., Valsuani F., Tagliafico L. A., "Liquefied natural gas submerged combustion vaporization facilities: process integration with power conversion units", Int J Energy Res, 37(1), 80-92, (2013). https://doi.org/10.1002/er.1937
  2. Chen Y. and Chen X., "A technical analysis of heat exchangers in LNG plants and terminals", Nat Gas Ind, 30(1), 96-100, (2010).
  3. Gomez M. R., Garcia R. F., Gomez J. R., Carril J. C., "Thermodynamic analysis of a Brayton cycle and Rankine cycle arranged in series exploiting the cold exergy of LNG (liquefied natural gas)", Energy, in press, (2014).
  4. Kumar S., Kwon H. T., Choi K. H., Lim W. S., Cho J. H., Tak K. J., Moon I., "LNG: An ecofriendly cryogenic fuel for sustainable development", Appl Energy, 88, 4264-4273, (2011). https://doi.org/10.1016/j.apenergy.2011.06.035
  5. Kim K. H., Han C. H., Kim K., "Effects of ammonia concentration on the thermodynamic performances of ammonia-water based power cycles", Thermo- chimica Acta, 530, 7-16, (2012). https://doi.org/10.1016/j.tca.2011.11.028
  6. Kim K. H., Ko H. J., Kim K., "Assessment of pinch point characteristics in heat exchangers and condensers of ammonia-water based power cycles", Applied Energy, 113, 970-981, (2014). https://doi.org/10.1016/j.apenergy.2013.08.055
  7. Yun E., Kim H. D., Yoon S. Y., Kim K. C., "Development of small-scale organic Rankine cycle power system and study on its operating characteristics, KSME B, 37(10), 919-926 (2013)
  8. Kim K. H., "Exergy analysis of a vapor compression cycle driven by organic Rankine cycle", KSME B, 37(12), 1137-1145, (2013) https://doi.org/10.3795/KSME-B.2013.37.12.1137
  9. Miyazaki T., Kang Y.T., Akisawa A., Kashiwagi T., "A combined power cycle using refuse incineration and LNG cold energy", Energy, 25, 639-655, (2000). https://doi.org/10.1016/S0360-5442(00)00002-5
  10. Choi K. I., Chang H. M., "Thermodynamic analysis of power generation cycle utilizing LNG cold energy", Superconductivity and Cryogenics, 1(1), 48-55, (1999).
  11. Shi X., Che X., "A combined power cycle utilizing low-temperature waste heat and LNG cold energy", Energy, 50, 567-575, (2009).
  12. Wang Q., Li Y. Z., Wang J., "Analysis of power cycle based on cold energy of liquefied natural gas and low-grade heat source", Appl Therm Eng, 24, 539-548, (2004). https://doi.org/10.1016/j.applthermaleng.2003.09.010
  13. Ha J. M., Hong S., You H. S., Kim K. C., "Turbo expander power generation using pressure drop at valve station in natural gas transportation pipeline", KIGAS, 16(3), 1-7, (2012) https://doi.org/10.7842/kigas.2012.16.3.001
  14. Ha J. M., Hong S., Kim K. C., "Thermodynamic analysis on the feasibility of turbo expander power generation using natural gas waste pressure", KIGAS, 16(6), 136-142, (2012). https://doi.org/10.7842/kigas.2012.16.6.136
  15. Yang T., Chen G. J., Guo T. M., "Extension of the Wong-Sandler mixing rule to the threeparameter Patel-Teja equation of state: Application up to the near-critical region", Chem. Eng. J, 67, 27-36, (1997). https://doi.org/10.1016/S1385-8947(97)00012-0
  16. Y. A. Cengel, M. A. Boles, "Thermodynamics, and Engineering Approach," 7th Ed., Table A2, McGraw-Hill (2008).

Cited by

  1. Performance evaluation of two-stage turbine for the organic rankine cycle system vol.31, pp.12, 2017, https://doi.org/10.1007/s12206-017-1127-8
  2. LNG 냉열과 재생 유기 랭킨 사이클을 이용한 복합 사이클의 성능 특성 해석 vol.31, pp.2, 2014, https://doi.org/10.7316/khnes.2020.31.2.234