DOI QR코드

DOI QR Code

Preparation of Silicon-Carbon Composite via Magnesiothermic Reduction Method and Its Application to the Anode Material for Lithium Ion Battery

마그네슘열환원법을 이용한 실리콘-탄소 복합재 제조 및 리튬이차전지 음극재로의 이용

  • Kim, Eudem (Department of Chemical Engineering, Myongji University) ;
  • Kwon, Soon Hyung (Department of Chemical Engineering, Myongji University) ;
  • Kim, Myung-Soo (Department of Chemical Engineering, Myongji University) ;
  • Jung, Ji Chul (Department of Chemical Engineering, Myongji University)
  • Received : 2014.02.07
  • Accepted : 2014.04.22
  • Published : 2014.05.27

Abstract

Silicon-carbon composite was prepared by the magnesiothermic reduction of mesoporous silica and subsequent impregnation with a carbon precursor. This was applied for use as an anode material for high-performance lithium-ion batteries. Well-ordered mesoporous silica(SBA-15) was employed as a starting material for the mesoporous silicon, and sucrose was used as a carbon source. It was found that complete removal of by-products ($Mg_2Si$ and $Mg_2SiO_4$) formed by side reactions of silica and magnesium during the magnesiothermic reduction, was a crucial factor for successful formation of mesoporous silicon. Successful formation of the silicon-carbon composite was well confirmed by appropriate characterization tools (e.g., $N_2$ adsorption-desorption, small-angle X-ray scattering, X-ray diffraction, and thermogravimetric analyses). A lithium-ion battery was fabricated using the prepared silicon-carbon composite as the anode, and lithium foil as the counter-electrode. Electrochemical analysis revealed that the silicon-carbon composite showed better cycling stability than graphite, when used as the anode in the lithium-ion battery. This improvement could be due to the fact that carbon efficiently suppressed the change in volume of the silicon material caused by the charge-discharge cycle. This indicates that silicon-carbon composite, prepared via the magnesiothermic reduction and impregnation methods, could be an efficient anode material for lithium ion batteries.

Keywords

References

  1. C. W. Xiao, Y. Ding, J. T. Zhang, X. Q. Su, G. R. Li, X. P. Gao and P. W. Shen, J. Power Sources 248, 323 (2014). https://doi.org/10.1016/j.jpowsour.2013.09.131
  2. V. G. Khomenko, V. Z. Barsukov, J. E. Doninger and I. V. Barsukov, J. Power Sources 165, 598 (2007). https://doi.org/10.1016/j.jpowsour.2006.10.059
  3. N. K. Chaudhari, M. -S. Kim, T. -S. Bae and J. -S. Yu, Electrochim. Acta 114, 60 (2013). https://doi.org/10.1016/j.electacta.2013.09.169
  4. H. -C. Tao, M. Huang, L. -Z. Fan and X. Qu, Solid State Ion. 220, 1 (2012). https://doi.org/10.1016/j.ssi.2012.05.014
  5. J. Cho, J. Mater. Chem. 20, 4009 (2010). https://doi.org/10.1039/b923002e
  6. N. Dimov, S. Kugino and M. Yoshio, Electrochim. Acta 48, 1579 (2003). https://doi.org/10.1016/S0013-4686(03)00030-6
  7. M. -H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui and J. Cho, Nano Lett. 9(9), 3844 (2009). https://doi.org/10.1021/nl902058c
  8. Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, W. D. Nix and Y. Cui, Nano Lett. 11(7), 2949 (2011). https://doi.org/10.1021/nl201470j
  9. H. Ma, F. Cheng, J. Chen, J. Zhao, C. Li, Z. Tao and J. Liang, Adv. Mater. 19(22), 4067 (2007). https://doi.org/10.1002/adma.200700621
  10. J. K. Lee, K. B. Smith, C. M. Hayner and H. H. Kung, Chem. Commun. 46, 2025 (2010). https://doi.org/10.1039/b919738a
  11. H. Kim, B. Han, J. Choo and J. Cho, Angew. Chem. Int. Ed. 47(52), 10151 (2008). https://doi.org/10.1002/anie.200804355
  12. S. Park, S. -H. Baeck, T. J. Kim, Y. -M. Chung, S. -H. Oh and I. K. Song, J. Mol. Catal. A 319(1-2), 98 (2010). https://doi.org/10.1016/j.molcata.2009.12.006
  13. R. Zhang, D. Shi, N. Liu, Y. Cao and B. Chen, Appl. Catal. B 146, 79 (2014). https://doi.org/10.1016/j.apcatb.2013.03.028
  14. M. -S. Wang, L. -Z. Fan, M. Huang, J. Li and X. Qu, J. Power Sources 219, 29 (2012). https://doi.org/10.1016/j.jpowsour.2012.06.102
  15. M. Guo, X. Zou, H. Ren, F. Muhammad, C. Huang, S. Qiu and G. Zhu, Micropor. Mesopor. Mater. 142(1), 194 (2011). https://doi.org/10.1016/j.micromeso.2010.11.036

Cited by

  1. Electrochemical Properties of Fluorine-Doped Tin Oxide Nanoparticles Using Ultrasonic Spray Pyrolysis vol.26, pp.5, 2016, https://doi.org/10.3740/MRSK.2016.26.5.258