DOI QR코드

DOI QR Code

Preparation of ZrB2 by Self-propagating Synthesis and Its Characteristics

자전연소합성법에 의한 ZrB2 세라믹분말합성 및 NaCl의 영향

  • Kim, Jinsung (Department of Nano Advanced Material Engineering, Chungnam National University) ;
  • Nersisyan, Hayk (Rapidly Solidified Materials Research Center(RASOM)) ;
  • Won, Changwhan (Department of Nano Advanced Material Engineering, Chungnam National University)
  • 김진성 (충남대학교 나노신소재공학과) ;
  • ;
  • 원창환 (충남대학교 나노신소재공학과)
  • Received : 2014.04.11
  • Accepted : 2014.04.28
  • Published : 2014.05.27

Abstract

Zirconium boride is an artificial or which is rarely found in the nature. $ZrB_2$ is popular in the hard material industry because it has a high melting point, excellent mechanical properties and chemical stability. There are two known methods to synthesize $ZrB_2$. The first involves direct reaction between Zr and B, and the second is by reduction of the metal halogen. However, these two methods are known to be unsuitable for mass production. SHS(Self-propagating High-temperature Synthesis) is an efficient and economic method for synthesizing hard materials because it uses exothermic reactions. In this study, $ZrB_2$ was successfully synthesized by subjecting $ZrO_2$, Mg and $B_2O_3$ to SHS. Because of the high combustion temperature and rapid combustion, in conjunction with the stoichiometric ratio of $ZrO_2$, Mg and $B_2O_3$; single phase $ZrB_2$ was not synthesized. In order to solve the temperature problem, Mg and NaCl additives were investigated as diluents. From the experiments it was found that both diluents effectively stabilized the reaction and combustion regime. The final product, made under optimum conditions, was single-phase $ZrB_2$ of $0.1-0.9{\mu}m$ particle size.

Keywords

References

  1. W. G. Fahrenholtz, G. E. Hilmas, I. G. Talmy and J. A. Zaykoski, J. Am. Ceram. Soc., 90(5), 1347 (2007). https://doi.org/10.1111/j.1551-2916.2007.01583.x
  2. A. L. Chamberlain, W. G. Fahrenholtz, G. E. Hilmas and D. T. Ellerby, J. Am. Ceram. Soc., 87(6), 1170 (2004). https://doi.org/10.1111/j.1551-2916.2004.01170.x
  3. Y. Murata, U.S. Patent 3, 487 (1970).
  4. O. Kida, Japanese Patent JP 2000335969 May 12 (2000).
  5. N. Kaji, H. Shikano and I. Tanaka, Taikabutsu Overseas, 14(2), 39 (1992).
  6. B. Stucker, W. Bradley, P. T. Eubank, S. Norasetthekul and B. Bozkurt, Solid Freeform Fabric. Symp.Proc., 1, 257 (1997).
  7. Z. J. Jin, M. Zhang, D. M. Guo and R. K. Kang, Key Eng. Mater., 291-292, 537 (2005). https://doi.org/10.4028/www.scientific.net/KEM.291-292.537
  8. J. Sung, D. M. Goedde, G. S. Girolami and J. R. Abelson, J. Appl. Phys., 91(6), 3904 (2002). https://doi.org/10.1063/1.1436296
  9. M. M. Opeka, I. G. Talmy and J. A. Zaykoski, J. Mater. Sci., 39(19), 5887 (2004). https://doi.org/10.1023/B:JMSC.0000041686.21788.77
  10. D. M. Van Wie, D. G. Jr. Drewry, D. E. King and C. M. Hudson, J. Mater. Sci., 39(19), 5915 (2004). https://doi.org/10.1023/B:JMSC.0000041688.68135.8b
  11. M. E. White and W. R. Price, J. Hopkins APL Tech. Digest., 20(3), 415 (1999).
  12. T. A. Jackson, D. R. Eklund and A. J. Fink, J. Mater. Sci., 39(19), 5905 (2004). https://doi.org/10.1023/B:JMSC.0000041687.37448.06
  13. O. OdaWara, Ceram., 24(6), 509 (1989).
  14. J. F. Crider, Ceram. Eng. Sci. Pro., 3(9-10), 519 (1982). https://doi.org/10.1002/9780470318782.ch8