DOI QR코드

DOI QR Code

Sol-gel Coating of ZrO2 Film in Aluminium Etch Pit and Anodizing Properties

알루미늄 에치피트에 ZrO2 막의 졸-겔 코팅 및 양극산화 특성

  • Chen, Fei (School of Nano Materials Engineering, Kyungpook National University) ;
  • Park, Sang-Shik (School of Nano Materials Engineering, Kyungpook National University)
  • ;
  • 박상식 (경북대학교 나노소재공학부)
  • Received : 2014.03.28
  • Accepted : 2014.04.28
  • Published : 2014.05.27

Abstract

$ZrO_2$ films were coated on aluminum etching foil by the sol-gel method to apply $ZrO_2$ as a dielectric material in an aluminum(Al) electrolytic capacitor. $ZrO_2$ films annealed above $450^{\circ}C$ appeared to have a tetragonal structure. The withdrawal speed during dip-coating, and the annealing temperature, influenced crack-growth in the films. The $ZrO_2$ films annealed at $500^{\circ}C$ exhibited a dielectric constant of 33 at 1 kHz. Also, uniform $ZrO_2$ tunnels formed in Al etch-pits $1{\mu}m$ in diameter. However, $ZrO_2$ film of 100-200 nm thickness showed the withstanding voltage of 15 V, which was unsuitable for a high-voltage capacitor. In order to improve the withstanding voltage, $ZrO_2$-coated Al etching foils were anodized at 300 V. After being anodized, the $Al_2O_3$ film grew in the directions of both the Al-metal matrix and the $ZrO_2$ film, and the $ZrO_2$-coated Al foil showed a withstanding voltage of 300 V. However, the capacitance of the $ZrO_2$-coated Al foil exhibited only a small increase because the thickness of the $Al_2O_3$ film was 4-5 times thicker than that of $ZrO_2$ film.

Keywords

References

  1. R. S. Alwitt, H. Uchi, T. R. Beck and R. C. Alkire, J. Electrochem. Soc., 131, 13 (1984). https://doi.org/10.1149/1.2115495
  2. H. Takahashi and M. Nagayama, Electrochim. Acta, 23, 279 (1978). https://doi.org/10.1016/0013-4686(78)85058-0
  3. M. Shikanai, M. Sakairi, H. Takahashi, M. Seo, K. Takahiro, S. Nagata and S. Yamaguchi, J. Electrochem. Soc., 144, 2756 (1997). https://doi.org/10.1149/1.1837892
  4. K. Watanabe, M. Sakairi, H. Takahashi, S. Hirai and S. Yamaguchi, J. Electroanal. Chem., 473, 250 (1999). https://doi.org/10.1016/S0022-0728(99)00121-7
  5. K. Watanabe, M. Sakairi, H. Takahashi, K. Takahiro, S, Nagata and S. Hirai, Electrochemistry, 67, 1243 (1999).
  6. S. S. Park and B. T. Lee, J Electroceramics., 13, 111 (2004). https://doi.org/10.1007/s10832-004-5085-z
  7. T. Ivanova, A. Harizanova, T. Koutzarova, N. Krins and B. Vertruyen, Mater. Sci. Eng. B, 165, 212 (2009). https://doi.org/10.1016/j.mseb.2009.07.013
  8. L. F. Cueto, E. Sanchez, L. M. Torres-Martinez and G. A. Hirata, Mater. Charact., 55, 263 (2005). https://doi.org/10.1016/j.matchar.2005.05.004
  9. K. Joy, I. J. Berlin, P. B. Nair, J. S. Lakshmi, G. P. Daniel and P. V. Thomas, J. Phys. Chem. Solids, 72, 673 (2011). https://doi.org/10.1016/j.jpcs.2011.02.012
  10. S. M. Attia, J. Wang, G. Wu, J. Shen and J. Ma, J. Mater. Sci. Technol., 18 (3), 211 (2002)
  11. J. Brinker, G. C. Frey, A. J. Hurd and C. S. Ashley, Thin Solid Films, 201, 97 (1991) https://doi.org/10.1016/0040-6090(91)90158-T
  12. C. Y. Ma, F. Lapostolle, P. Briois and Q. Y. Zhang, Appl. Surf. Sci., 253, 8718 (2007). https://doi.org/10.1016/j.apsusc.2007.04.054
  13. P. Y. Kuei, J. D. Chou, C. T. Huang, H. H. Ko and S. C. Su, J. Cryst. Growth, 314, 81 (2011). https://doi.org/10.1016/j.jcrysgro.2010.10.162
  14. J. H. Jeong, C. H. Choi, K. H. Oh and D. N. Lee, J. Kor. Inst. Met. & Mater., 32, 378 (1994)
  15. K. Shimizu, G. E. Thompson and G. C. Wood, Thin Solid Films, 81, 39 (1981). https://doi.org/10.1016/0040-6090(81)90502-2
  16. Y. Xu, G. E. Thompson, G. C. Wood and B. Bethune, Corros. Sci., 27(1), 83 (1987). https://doi.org/10.1016/0010-938X(87)90121-1
  17. T. Kudo and R. S. Alwitt, Electrochim. Acta, 23, 341 (1978). https://doi.org/10.1016/0013-4686(78)80072-3
  18. H. Takahashi, C Ikegami, M Seo and R. Furuichi, J. Electron Microsc., 40, 101 (1991).

Cited by

  1. Coated Al Foil for High Voltage Capacitor vol.24, pp.2, 2015, https://doi.org/10.5757/ASCT.2015.24.2.33