DOI QR코드

DOI QR Code

Effect of First-Stage Growth Manipulation and Polarity of SiC Substrates on AlN Epilayers Grown Using Plasma-Assisted Molecular Beam Epitaxy

  • Le, Duy Duc (Department of Advanced Materials Engineering, Chungnam National University) ;
  • Kim, Dong Yeob (Department of Advanced Materials Engineering, Chungnam National University) ;
  • Hong, Soon-Ku (Department of Advanced Materials Engineering, Chungnam National University)
  • Received : 2014.04.27
  • Accepted : 2014.05.02
  • Published : 2014.05.27

Abstract

Aluminum nitride(AlN) films were grown on the C-face and on the Si-face of (0001) silicon carbide(SiC) substrates using plasma-assisted molecular-beam epitaxy(PA-MBE). This study was focused on first-stage growth manipulation prior to the start of AlN growth. Al pre-exposure, N-plasma pre-exposure, and simultaneous exposure(Al and N-plasma) procedures were used in the investigation. In addition, substrate polarity and, first-stage growth manipulation strongly affected the growth and properties of the AlN films. Al pre-exposure on the C-face and on the Si-face of SiC substrates prior to initiation of the AlN growth resulted in the formation of hexagonal hillocks on the surface. However, crack formation was observed on the C-face of SiC substrates without Al pre-exposure. X-ray rocking-curve measurements revealed that the AlN epilayers grown on the Si-face of the SiC showed relatively lower tilt and twist mosaic than did the epilayers grown on the C-face of the SiC. The results from the investigations reported in this paper indicate that the growth conditions on the Si-face of the SiC without Al pre-exposure was highly preferred to obtain the overall high-quality AlN epilayers formed using PA-MBE.

Keywords

References

  1. Y. Taniyasu, M. Kasu and T. Makimoto, Nature, 441, 325 (2006). https://doi.org/10.1038/nature04760
  2. J. Li, Z. Y. Fan, R. Dahal, M. L. Nakarmi, J. Y. Lin and H. X. Jiang, Appl. Phys. Lett., 89, 213510 (2006). https://doi.org/10.1063/1.2397021
  3. R. Dahal, Al tahtamouni T. M., Z. Y. Fan, J. Y. Lin, and H.-X. Jiang, Appl. Phys. Lett., 90(26), 263505 (2007). https://doi.org/10.1063/1.2752126
  4. Y. Taniyasu and M. Kasu, Appl. Phys. Lett., 96, 221110 (2010). https://doi.org/10.1063/1.3446834
  5. G. Ferro, H. Okumura and S. Yoshida, J. Cryst. Growth, 209, 415 (2000). https://doi.org/10.1016/S0022-0248(99)00582-5
  6. S. Tungasmita, J. Birch, P. O. A. Persson, K. Jarrendahl and L. Hultman, Appl. Phys. Lett., 76, 170 (2000). https://doi.org/10.1063/1.125692
  7. S. Yamada, J. Kato, S. Tanaka, I. Suemune, A. Avramescu, Y. Aoyagi, N. Teraguchi and A. Suzuki, Appl. Phys. Lett., 78, 3612 (2001). https://doi.org/10.1063/1.1377309
  8. O. Y. Ledyaev, A. E. Cherenkov, A.E. Nikolaev, I. P. Nikitina, N. I. Kuznetsov, M. S. Dunaevski, A. N. Titkov and V. A. Dmitriev, Phys. Status Solidi C, 0, 474 (2003). https://doi.org/10.1002/pssc.200390091
  9. A. Nakajima, Y. Furukawa, S. Koga and H. Yonezu, J. Cryst. Growth, 265, 351 (2004). https://doi.org/10.1016/j.jcrysgro.2004.02.014
  10. V. Cimalla, J. Pezoldt and O. Ambacher, J. Phys. Appl. Phys., 40, 6386 (2007). https://doi.org/10.1088/0022-3727/40/20/S19
  11. A. L. Tahtamouni, J. Y. Lin and H. X. Jiang, Appl. Phys. Lett., 101, 192106 (2012). https://doi.org/10.1063/1.4766732
  12. Z. Chen, S. Newman, D. Brown, R. Chung, S. Keller, U. K. Mishra, S. P. Denbaars and S. Nakamura, Appl. Phys. Lett., 93, 191906 (2008). https://doi.org/10.1063/1.2988323
  13. L. Liu and J. H. Edgar, Mater. Sci. Eng. R Rep., 37, 61 (2002). https://doi.org/10.1016/S0927-796X(02)00008-6
  14. T. Metzger, R. Hopler, E. Born, O. Ambacher, M. Stutzmann, R. Stommer, M. Schuster, H. Gobel, S. Christiansen, M. Albrecht and H. P. Strunk, Philos. Mag. A, 77, 1013 (1998). https://doi.org/10.1080/01418619808221225