DOI QR코드

DOI QR Code

Design procedure for prestressed concrete beams

  • Colajanni, Piero (Dipartimento di Ingegneria Civile, Informatica, Edile, Ambientale e Matematica Applicata, Universita di Messina) ;
  • Recupero, Antonino (Dipartimento di Ingegneria Civile, Informatica, Edile, Ambientale e Matematica Applicata, Universita di Messina) ;
  • Spinella, Nino (Dipartimento di Ingegneria Civile, Informatica, Edile, Ambientale e Matematica Applicata, Universita di Messina)
  • 투고 : 2012.11.14
  • 심사 : 2013.09.16
  • 발행 : 2014.02.25

초록

The theoretical basis and the main results of a design procedure, which attempts to provide the optimal layout of ordinary reinforcement in prestressed concrete beams, subjected to bending moment and shear force are presented. The difficulties encountered in simulating the actual behaviour of prestressed concrete beam in presence of coupled forces bending moment - shear force are discussed; particular emphasis is put on plastic models and stress fields approaches. A unified model for reinforced and prestressed concrete beams under axial force - bending moment - shear force interaction is provided. This analytical model is validated against both experimental results collected in literature and nonlinear numerical analyses. Finally, for illustrating the applicability of the proposed procedure, an example of design for a full-scale prestressed concrete beam is shown.

키워드

참고문헌

  1. ACI Committee 318 - (1983), "Building code requirements for reinforced concrete (ACI 318-95) and commentary ACI 318 R-95" - American Concrete Institute, Detroit.
  2. Ahn, J.H., Jung, C.Y. and Kim, S.H. (2010), "Evaluation on structural behaviors of prestressed composite beams using external prestressing member", Struct. Eng. Mech., 34(2), 247-275. https://doi.org/10.12989/sem.2010.34.2.247
  3. Au, F.T.K., Leung, C.C.Y., Kwan, A.K.H. and Du, J.S. (2009), "Flexural ductility of prestressed concrete beams with unbonded tendons", Comput. Concr., 6(6),451-472. https://doi.org/10.12989/cac.2009.6.6.451
  4. Au, F.T.K., Leung, C.C.Y. and Kwan, A.K.H. (2011), "Flexural ductility and deformability of reinforced and prestressed concrete sections", Comput. Concr., 8(4),473-489. https://doi.org/10.12989/cac.2011.8.4.473
  5. Bertagnoli, G., Mancini, G., Recupero, A. and Spinella, N. (2011), "Rotating compression field model for reinforced concrete beams under prevalent shear actions", Struct. Concrete, 12(3), 178-186 https://doi.org/10.1002/suco.201000006
  6. Colajanni, P., Recupero, A. and Spinella, N. (2008a), "Shear strength prediction by modified plasticity theory for SFRC beams", 2008 Seismic Engineering International Conference Commemorating the 1908 Messina and Reggio Calabria Earthquake, MERCEA 2008; Reggio Calabria, Italy; 8-11 July 2008, 1020(1), 888-895.
  7. Colajanni P., La Mendola L., Priolo S. and Spinella N. (2008b), "Experimental tests and FEM model for SFRC beams under flexural and shear loads", 2008 Seismic Engineering International Conference Commemorating the 1908 Messina and Reggio Calabria Earthquake, MERCEA 2008; Reggio Calabria, Italy; 8-11 July 2008, 1020(1), 872-879.
  8. Colajanni P., Recupero A. and Spinella N. (2012), "Generalization of shear truss model to the case of SFRC beams with stirrups", Comput. Concr., 9(3), 227-244. https://doi.org/10.12989/cac.2012.9.3.227
  9. Collins M.P., Mitchell D., Adebar P.E. and Vecchio F.J. (1996), "A general shear design method", ACI Struct. J., 93(1), 36-45.
  10. Cucchiara C., Fossetti M. and Papia M. (2012), "Steel fibre and transverse reinforcement effects on the behaviour of high strength concrete beams", Struct. Eng. Mech., 42(4), 551-570. https://doi.org/10.12989/sem.2012.42.4.551
  11. "Design of Concrete Structures - Part.1 : General Rules and Rules for Buildings - prEN 1992-1-1 (Revised final draft)" April 2002.
  12. Fanti G. and Mancini G. (1995), "Shear, normal force, bending moment interaction in bridge piers", Proceedings of the First Japan -Italy Workshop on Seismic Design and Retrofit of Bridges, March 13-14, 1995 Tsukuba, Japan.
  13. Foster S.J., Htut T. and Ng T.S. (2013), "High performance fibre reinforced concrete: Fundamental behaviour and modelling", 8th International Conference on Fracture Mechanics of Concrete and Concrete Structures, FraMCoS 2013; Toledo; Spain; 11-14 March 2013, pages 69-78
  14. Gocic, M. and Sadovic, E. (2012), "Software for application of newton-raphson method in estimation of strains in prestressed concrete girders", Comput. Concr., 10(2), 121-133. https://doi.org/10.12989/cac.2012.10.2.121
  15. Kani, G.N.J. (1967), "How safe are our large reinforced concrete beams?", ACI Struct. J., 64(4), 128-141.
  16. Morsch, E. (1908), "Der Eisenbetonbau. Seine Theorie und Anwendung", 3rd, rev. ed., Stuttgart: Wittwer.
  17. Nielsen, M.P. (1984), "Limit analysis and concrete plasticity", Prentice-Hall, Englewood Cliffs, NJ.
  18. Recupero A., D'Aveni A. and Ghersi A. (2003), "N-M-V Interaction domains for box and I-shaped reinforced concrete members", ACI Struct. J., 100(1), 113-119.
  19. Recupero, A., D'Aveni, A. and Ghersi A. (2005), "Bending Moment - Shear Force Interaction Domains for Prestressed Concrete Beams", ASCE J. Struct. Eng., 131(9), 1413-1421. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:9(1413)
  20. Ritter W. (1989), "Die bauweise hennebique (Construction Techniques of. Hennebique)," Schweizerische Bauzeitung, Zurich, 33(7), 59-61
  21. Rossi P.P. and Recupero A. (2013), "Ultimate strength of reinforced concrete circular members subjected to axial force, bending moment and shear force", ASCE J. Struct. Eng., 139(6), 915-928. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000724
  22. Russo G. and Puleri G. (1997), "Stirrup effectiveness in reinforced concrete beams under flexure and shear", ACI Struct. J., 94(3), 451-476.
  23. Russo G., Somma G. and Angeli P. (2004), "Design shear strength formula for high strength concrete beams", Mater. Struct., 37(274), 680-688. https://doi.org/10.1617/14016
  24. Russo G., Venier R., Pauletta M. (2005), "Reinforced concrete deep beams-shear strength model and design formula", ACI Struct. J., 102(3), 429-437.
  25. Spinella N., Colajanni P. and Recupero A. (2010), "A simple plastic model for shear critical SFRC beams", ASCE J. Strcut. Eng., 136(4), 390-400. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000127
  26. Spinella, N., Colajanni, P. and La Mendola, L. (2012), "Nonlinear analysis of beams reinforced in shear with stirrups and steel fibers", ACI Struct. J., 109(1), 53-64.
  27. Spinella N. (2013), "Shear strength of full-scale steel fibre-reinforced concrete beams without stirrups", Comput. Concr., 11(5), 365-382. https://doi.org/10.12989/cac.2013.11.5.365
  28. Tan, K.H. and Ng, C.K. (1998), "Effect of shear in externally prestressed beams", ACI Struct. J., 95(2), 116-128.
  29. Thurlimann, B., Marti, P., Pralong, J., Ritz, P. and Zimmerli, B. (1983), "Anwendung der plastizitatstheorie auf stahlbeton, institut fur Baustatik und konstruktion", ΕΤΗ Zurich, Autographie zum Fortbildungskurs.
  30. Vecchio, F.J. and Collins, M.P. (1986), "The modified compression field theory for reinforced concrete elements subjected to shear", ACI Struct. J., 83(2), 219-231.
  31. Vecchio, F.J. (2000), "Disturbed stress field model for reinforced concrete: Formulation", ASCE J. Struct. Eng., 126(9), 1070-1077. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1070)
  32. Wong, P.S. and Vecchio, F.J. (2002), "VecTor2 and form works users manual", Technical report. Department of Civil Engineering, University of Toronto - Canada.
  33. Vecchio, F.J. and Collins M.P. (1982), "Response of reinforced concrete to in plane shear and normal stress", Technical report, Department of Civil Engineering, University of Toronto - Canada.

피인용 문헌

  1. Shear capacity in concrete beams reinforced by stirrups with two different inclinations vol.81, 2014, https://doi.org/10.1016/j.engstruct.2014.10.011
  2. Failure by corrosion in PC bridges: a case history of a viaduct in Italy vol.7, pp.2, 2016, https://doi.org/10.1108/IJSI-09-2014-0046
  3. Increasing the shear capacity of reinforced concrete beams using pretensioned stainless steel ribbons vol.18, pp.3, 2017, https://doi.org/10.1002/suco.201600089
  4. Shear performance assessment of steel fiber reinforced-prestressed concrete members vol.16, pp.6, 2015, https://doi.org/10.12989/cac.2015.16.6.825
  5. Shear strength degradation due to flexural ductility demand in circular RC columns vol.13, pp.6, 2015, https://doi.org/10.1007/s10518-014-9691-0
  6. A Model for the Analysis of Ultimate Capacity of RC and PC Corroded Beams vol.2018, pp.1687-8094, 2018, https://doi.org/10.1155/2018/8697109
  7. Camber calculation of prestressed concrete I-Girder considering geometric nonlinearity vol.19, pp.1, 2017, https://doi.org/10.12989/cac.2017.19.1.001
  8. A numerical-experimental evaluation of beams composed of a steel frame with welded and conventional stirrups vol.22, pp.1, 2014, https://doi.org/10.12989/cac.2018.22.1.027
  9. A numerical-experimental evaluation of beams composed of a steel frame with welded and conventional stirrups vol.22, pp.1, 2014, https://doi.org/10.12989/cac.2018.22.1.027
  10. Experimental tests on corroded prestressed concrete beams subjected to transverse load vol.20, pp.6, 2014, https://doi.org/10.1002/suco.201900242