DOI QR코드

DOI QR Code

CONVEX SOLUTIONS OF THE POLYNOMIAL-LIKE ITERATIVE EQUATION ON OPEN SET

  • Gong, Xiaobing (Key Laboratory of Numerical Simulation of Sichuan Province, College of Mathematics and Information Science Neijiang Normal University)
  • Received : 2012.05.25
  • Published : 2014.05.31

Abstract

Because of difficulty of using Schauder's fixed point theorem to the polynomial-like iterative equation, a lots of work are contributed to the existence of solutions for the polynomial-like iterative equation on compact set. In this paper, by applying the Schauder-Tychonoff fixed point theorem we discuss monotone solutions and convex solutions of the polynomial-like iterative equation on an open set (possibly unbounded) in $\mathbb{R}^N$. More concretely, by considering a partial order in $\mathbb{R}^N$ defined by an order cone, we prove the existence of increasing and decreasing solutions of the polynomial-like iterative equation on an open set and further obtain the conditions under which the solutions are convex in the order.

Keywords

References

  1. R. P. Agarwal, M. Meehan, and D. ORegan, Fixed Point Theory and Applications, Cambridge University Press, Cambridge, 2001.
  2. H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), no. 4, 620-709. https://doi.org/10.1137/1018114
  3. K. Baron and W. Jarczyk, Recent results on functional equations in a single variable, perspectives and open problems, Aequationes Math. 61 (2001), no. 1-2, 1-48. https://doi.org/10.1007/s000100050159
  4. J. G. Dhombres, Iteration lineaire dordre deux, Publ. Math. Debrecen 24 (1977), no. 3-4, 277-287.
  5. X. Gong and W. Zhang, Convex solutions of the polynomial-like iterative equation in Banach spaces, Publ. Math. Debrecen 82 (2013), no. 2, 341-358. https://doi.org/10.5486/PMD.2013.5305
  6. W. Jarczyk, On an equation of linear iteration, Aequationes Math. 51 (1996), no. 3, 303-310. https://doi.org/10.1007/BF01833285
  7. M. Kuczma, B. Choczewski, and R. Ger, Iterative Functional Equations, Encyclopedia Math. Appl., vol. 32, Cambridge Univ. Press, Cambridge, 1990.
  8. M. Kuczma and A. Smajdor, Fractional iteration in the class of convex functions, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys. 16 (1968), 717-720.
  9. M. Kulczycki and J. Tabor, Iterative functional equations in the class of Lipschitz functions, Aequationes Math. 64 (2002), no. 1-2, 24-33. https://doi.org/10.1007/s00010-002-8028-2
  10. J. Mai and X. Liu, Existence, uniqueness and stability of $C^m$ solutions of iterative functional equations, Sci. China Ser. A 43 (2000), no. 9, 897-913. https://doi.org/10.1007/BF02879796
  11. M. Malenica, On the solutions of the functional equation ${\phi}(x)+{\phi}^2(x)=F(x)$, Mat. Vesnik 6(19)(34) (1982), no. 3, 301-305.
  12. J. Matkowski and W. Zhang, On linear dependence of iterates, J. Appl. Anal. 6 (2000), no. 1, 149-157.
  13. A. Mukherjea and J. S. Ratti, On a functional equation involving iterates of a bijection on the unit interval, Nonlinear Anal. 7 (1983), no. 8, 899-908. https://doi.org/10.1016/0362-546X(83)90065-2
  14. A. Mukherjea and J. S. Ratti, A functional equation involving iterates of a bijection on the unit interval. II, Nonlinear Anal. 31 (1998), no. 3-4, 459-464. https://doi.org/10.1016/S0362-546X(96)00322-7
  15. W. Rudin, Functional Analysis, Second edition, McGraw Hill, New York, 1991.
  16. J. Si, Existence of locally analytic solutions of the iterated equation ${\sum}_{i=1}^{n}{\lambda}_if^i(x)=F(x)$, Acta Math. Sinica. 37 (1994), no. 5, 590-600.
  17. J. Tabor and J. Tabor, On a linear iterative equation, Results Math. 27 (1995), no. 3-4, 412-421. https://doi.org/10.1007/BF03322847
  18. J. Tabor and M. Zoldak, Iterative equations in Banach spaces, J. Math. Anal. Appl. 299 (2004), no. 2, 651-662. https://doi.org/10.1016/j.jmaa.2004.06.011
  19. G. Targonski, Topics in Iteration Theory, Studia Mathematica: Skript, 6. Vandenhoeck & Ruprecht, Gttingen, 1981.
  20. T. Trif, Convex solutions to polynomial-like iterative equations on open intervals, Aequationes Math. 79 (2010), no. 3, 315-325. https://doi.org/10.1007/s00010-010-0020-7
  21. B. Xu and W. Zhang, Decreasing solutions and convex solutions of the polynomial-like iterative equation, J. Math. Anal. Appl. 329 (2007), no. 1, 483-497. https://doi.org/10.1016/j.jmaa.2006.06.087
  22. D. Yang and W. Zhang, Characteristic solutions of polynomial-like iterative equations, Aequationes Math. 67 (2004), no. 1-2, 80-105. https://doi.org/10.1007/s00010-003-2708-4
  23. E. Zeidler and P. R. Wadsack, Nonlinear Functional Analysis and Its Applications, Springer-Verlag, New york, 1986.
  24. J. Zhang, L. Yang, and W. Zhang, Some advances on functional equations, Adv. Math. (China) 24 (1995), no. 5, 385-405.
  25. W. Zhang, Discussion on the iterated equation ${\sum}_{i=1}^{n}{\lambda}_if^i(x)=F(x)$, Chinese Sci. Bull. 32 (1987), no. 21, 1444-1451.
  26. W. Zhang, Discussion on the differentiable solutions of the iterated equation ${\sum}_{i=1}^{n}{\lambda}_if^i(x)=F(x)$, Nonlinear Anal. 15 (1990), no. 4, 387-398. https://doi.org/10.1016/0362-546X(90)90147-9
  27. W. Zhang, Solutions of equivariance for a polynomial-like iterative equation, Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), no. 5, 1153-1163. https://doi.org/10.1017/S0308210500000615
  28. W. Zhang, K. Nikodem, and B. Xu, Convex solutions of polynomial-like iterative equations, J. Math. Anal. Appl. 315 (2006), no. 1, 29-40. https://doi.org/10.1016/j.jmaa.2005.10.006
  29. L. Zhao, A theorem concerning the existence and uniqueness of solutions of the functional equation ${\lambda}_1f(x)+{\lambda}_2f^2(x)=F(x)$, J. Univ. Sci. Tech. 32 (1983), 21-27 (in Chinese).

Cited by

  1. On a Zoltán Boros’ problem connected with polynomial-like iterative equations vol.26, 2015, https://doi.org/10.1016/j.nonrwa.2015.05.001