T-NEIGHBORHOODS IN VARIOUS CLASSES OF ANALYTIC FUNCTIONS

Saeid Shams, Ali Ebadian, Mahta Sayadiazar, and Janusz Sokół

Abstract. Let A be the class of analytic functions f in the open unit disk $U = \{z : |z| < 1\}$ with the normalization conditions $f(0) = f'(0) - 1 = 0$. If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ and $\delta > 0$ are given, then the T_δ-neighborhood of the function f is defined as

$$TN_\delta(f) = \left\{ g(z) = z + \sum_{n=2}^{\infty} b_n z^n \in A : \sum_{n=2}^{\infty} T_n |a_n - b_n| \leq \delta \right\},$$

where $T = \{T_n\}_{n=2}^{\infty}$ is a sequence of positive numbers. In the present paper we investigate some problems concerning T_δ-neighborhoods of functions in various classes of analytic functions with $T = \{2^{-n/2}\}_{n=2}^{\infty}$. We also find bounds for $\delta^*_T(A, B)$ defined by

$$\delta^*_T(A, B) = \inf \{ \delta > 0 : B \subset TN_\delta(f) \text{ for all } f \in A \},$$

where A, B are given subsets of A.

1. Introduction

Let A denote the class of analytic functions f in the open unit disk $U = \{z : |z| < 1\}$ with the normalization conditions $f(0) = f'(0) - 1 = 0$. If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, then the T_δ-neighborhood of the function f is defined as

$$TN_\delta(f) = \left\{ g(z) = z + \sum_{n=2}^{\infty} b_n z^n \in A : \sum_{n=2}^{\infty} T_n |a_n - b_n| \leq \delta \right\},$$

where δ is a positive number and $T = \{T_n\}_{n=2}^{\infty}$ is a sequence of positive numbers. St. Ruscheweyh in [14] considered $T = \{n\}_{n=2}^{\infty}$ and showed that if $f \in C$, then $TN_{1/4}(f) \subset S^*$, where C, S^* denote the well known classes of convex and starlike functions, respectively. In [4, 5, 6, 7, 10, 11, 12, 17, 18] other authors investigated some interesting results concerning neighborhoods of several classes of analytic functions. Some of the relations between the neighborhoods for a certain class of analytic functions was described by S. Shams et al. [15].
Also U. Bednarz and J. Sokół in [7] considered $T = \{\frac{1}{n^2(n-1)}\}_{n=2}^{\infty}$ and investigated T_3-neighborhood for various subclasses of analytic functions. Motivated by the above results, we consider in this paper T_3-neighborhood (1.1) with

$$T = \{2^{-n}n^{-2}\}_{n=2}^{\infty}.$$

We use this sequence because it is sufficiently strongly convergent to 0, which is necessary for the series considered here to be convergent. Notice that

$$\sum_{n=1}^{\infty} 2^{-n}n^{-2} = \pi^2/12 - (\log 2)^2/2$$

and it is the value of dilogarithm at $1/2$, [13].

The convolution or Hadamard product of the functions f and g of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad g(z) = z + \sum_{n=2}^{\infty} b_n z^n, \quad |z| < 1,$$

is defined by

$$(f * g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n.$$

Definition 1.1 ([2]). Let us consider the functions f that are meromorphic and univalent in U, holomorphic at 0 and have the expansion $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$. If, in addition, the complement of $f(U)$ with respect to \mathbb{C} is convex, then f is called a concave univalent function. The class of all concave functions is denoted by C_0.

It is well known [1], that if $f \in C_0$, then $|a_n| \geq 1$ for all $n > 1$ and equality holds if and only if $f(z) = z/(1 - \mu z)$, $|\mu| = 1$ (see [1, 3]). The authors in [2] considered the class $C_0(p) \subset C_0$ consisting of all concave functions that have a pole at the point p and are analytic in $|z| < |p|$. They proved that if $f \in C_0(1)$, then

$$|a_n - n + \frac{1}{2}| \leq \frac{n - 1}{2} \quad \text{for } n \geq 2,$$

and equality holds only for the function f_0 defined by

$$f_0(z) = \frac{2z - (1 - e^{i\theta})z^2}{2(1 - z)^2}, \quad |z| < 1.$$

It is well known that if $f \in C_0(1)$, then the complement of $f(U)$ can be represented as the union of a set of mutually disjoint half-lines (the end point of one half-line can lie on the another half-line), so $f(U)$ is a linearly accessible domain in the strict sense (see [8, 16]).

The authors in [7] also showed that $C_0(1) \subset K$, where K is the set of close-to-convex functions.

2. Main results

Throughout this section T will always be the sequence given by

$$(2.1) \quad T = \{T_n\}_{n=2}^{\infty} = \{2^{-n}n^{-2}\}_{n=2}^{\infty},$$

unless otherwise stated.
Theorem 2.1. If \(f, g \in A \) are of the form
\[f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad g(z) = z + \sum_{n=2}^{\infty} b_n z^n \]
with \(|a_n| \leq n \) and \(|b_n| \leq n \) for \(n = 2, 3, 4, \ldots \), then \(g \in TN_{\log\{4/e\}}(f) \), where \(T \) is given in (2.1). The number \(\log\{4/e\} \) is the best possible.

Proof. A simple calculation shows that
\[\sum_{n=1}^{\infty} \frac{z^n}{n^{2n}} = \int_0^z \sum_{n=1}^{n-1} \frac{\zeta^{n-1}}{2^n} d\zeta = \int_0^z \frac{1/2}{1 - \zeta/2} d\zeta = \log \frac{1}{1 - z/2}, \quad |z| < 2, \]
so we have
\[\sum_{n=1}^{\infty} \frac{1}{n^{2n}} = \log 2, \]
and then
\[\sum_{n=2}^{\infty} T_n |a_n - b_n| \leq \sum_{n=2}^{\infty} \frac{2n}{n^2 2^n} = 2 \sum_{n=2}^{\infty} \frac{1}{n^{2n}} = 2 \log 2 - 1 = \log\{4/e\}. \]

For the functions
\[f(z) = z + \sum_{n=2}^{\infty} a_n z^n = z + \sum_{n=2}^{\infty} n z^n, \quad g(z) = z + \sum_{n=2}^{\infty} b_n z^n = z - \sum_{n=2}^{\infty} n z^n \]
we have
\[\sum_{n=2}^{\infty} T_n |a_n - b_n| = 2 \sum_{n=2}^{\infty} \frac{1}{n^{2n}} = \log\{4/e\}. \]
Therefore, the number \(\log\{4/e\} \) cannot be replaced by a smaller one and it is the best possible. \(\square \)

It is well known that \(C \subset S^* \subset K \subset S \) (see [9]), where \(S, S^*, C \) and \(K \) denote the classes of univalent, starlike, convex and close-to-convex functions, respectively. Also, if \(f \in S^* \), then \(|a_n| \leq n, n = 2, 3, \ldots \), while if \(f \in C \), then \(|a_n| \leq 1, n = 2, 3, \ldots \).

Therefore we obtain the following corollary.

Corollary 2.2. If \(f \in S \), then we have
\[S \subset TN_{\log\{4/e\}}(f), \]
where \(T \) is given in (2.1).

The constant \(\log\{4/e\} \approx 0.386 \) seems not to be the best possible. An interesting open problem is to find the smallest constant \(\rho \) such that for each \(f \in S \)
\[S \subset TN_{\rho}(f), \]
where T is given in (2.1). For the Koebe function $f(z) = z/(1 - z)^2$ and $g(z) = -f(-z)$ we have $f, g \in S$ and

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n = z + \sum_{n=2}^{\infty} n z^n, \quad g(z) = z + \sum_{n=2}^{\infty} b_n z^n = z + \sum_{n=2}^{\infty} (-1)^{n-1} n z^n$$

so by (2.2)

$$\sum_{n=2}^{\infty} T_n |a_n - b_n| = \sum_{k=1}^{\infty} \frac{4k}{(2k)^2 2^k} = \log\{4/3\}.$$

Therefore, the number ϱ cannot be smaller than $\log\{4/3\}$. We conjecture that $\varrho = \log\{4/3\} = 0.28768 \cdots$.

Corollary 2.3. Let $f \in C$. Then $S \subset TN_{\beta}(f)$ with

$$\beta = \log\{2/e\} + \frac{\pi^2}{12} - \frac{(\log 2)^2}{2} = 0.275 \cdots.$$

Proof. At first, note that

$$f_2(x) = -\int_1^x \frac{\log t}{t - 1} \text{dt}, \quad x \in [0, 2],$$

is the dilogarithm. From the tables of dilogarithms we have

$$f_2(x) = \sum_{k=1}^{\infty} (-1)^k \frac{(x-1)^k}{k^2}, \quad x \in [0, 2],$$

(2.6) $f_2(x) + f_2(1-x) = -\log \{x\} \cdot \log \{1-x\} + \pi^2/6$,

(2.7) $f_2(1+x) - f_2(x) = -\log \{x\} \cdot \log \{x+1\} - \pi^2/12 - f_2(x^2)/2$.

Therefore, using (2.5) and (2.6) we obtain

$$\sum_{n=1}^{\infty} \frac{1}{n^2 2^n} = f_2(1/2) = \frac{\pi^2}{12} - \frac{(\log 2)^2}{2}.$$

If

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in C, \quad g(z) = z + \sum_{n=2}^{\infty} b_n z^n \in S,$$

then $|a_n| \leq 1, \ |b_n| \leq n$ and by (2.3), (2.8) we have

$$\sum_{n=2}^{\infty} T_n |a_n - b_n| \leq \sum_{n=2}^{\infty} \frac{n + 1}{n^2 2^n} = \sum_{n=2}^{\infty} \frac{1}{n^2 2^n} + \sum_{n=2}^{\infty} \frac{1}{n^2 2^n} = \log \{2/e\} + f_2(1/2) = 0.275 \cdots.$$

In a similar way as in Corollary 2.2, the constant $0.275 \cdots$ given in Corollary 2.3 is also not sharp but if the class S is replaced by the much larger class of all normalized analytic functions f such that $|a_n(f)| \leq n$ for $n \geq 2$, then (2.4)
becomes sharp. The best possible constant in the case $f \in \mathcal{S}$ is not known. We conjecture that the sharp constant is attained by the functions

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n = \frac{z}{(1-z)^n} \quad g(z) = z + \sum_{n=2}^{\infty} b_n z^n = \frac{z}{1+z}.$$

It is clear that $f \in \mathcal{S}$ and $g \in \mathcal{C}$. Moreover,

$$\sum_{n=2}^{\infty} T_n|a_n - b_n| = \sum_{n=2}^{\infty} \frac{n+1}{2^n n^2} - \sum_{n=2}^{\infty} \frac{1+(-1)^{n-1}}{2^n n^2}
= \log \{2/e\} + f_2(1/2) - \sum_{k=1}^{\infty} \frac{2}{2^{2k+1}(2k+1)^2}. \quad (2.9)$$

From the tables of dilogarithms we have

$$\sum_{k=1}^{\infty} \frac{2}{2^{2k+1}(2k+1)^2} = \int_0^{1/2} \frac{1}{t} \log \frac{1+t}{1-t} dt - 1 = f_2(1/2) - f_2(3/2) - 1.$$

By (2.7) we have

$$f_2(1/2) - f_2(3/2) = \frac{f_2(1/4)}{2} + \frac{\pi^2}{12} - \log \{2\} \cdot \log \{3/2\}.$$

Applying this in (2.9) we further get,

$$\sum_{n=2}^{\infty} T_n|a_n - b_n|
= \log \{2/e\} + f_2(1/2) - \left\{ \frac{f_2(1/4)}{2} + \frac{\pi^2}{12} - \log \{2\} \cdot \log \{3/2\} - 1 \right\}
= \log \{2\} \cdot \log \{3e/(2\sqrt{2})\} - \frac{f_2(1/4)}{2} = 0.24473 \cdots,$$

because $f_2(1/4) = 0.978469393 \cdots$. Therefore, the smallest constant β such that $\mathcal{S} \subset TN_\beta(f)$ for each $f \in \mathcal{C}$ lies between 0.24473 \cdots and 0.275 \cdots. We conjecture that it is the first number.

Theorem 2.4. Let f, g_1, g_2 be of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad g_1(z) = z + \sum_{n=2}^{\infty} c_n z^n, \quad g_2(z) = z + \sum_{n=2}^{\infty} d_n z^n,$$

where $|a_n| \leq n, \quad |c_n| \leq n, \quad |d_n| \leq n, \quad n = 2, 3, \ldots$. Then

$$g_1 \ast g_2 \in T_{N \log 2}(f).$$

The number $\log 2$ is the best possible.

Proof. Since

$$(g_1 \ast g_2)(z) = z + \sum_{n=2}^{\infty} c_n d_n z^n,$$
then we have
\[\sum_{n=2}^{\infty} \frac{1}{n^2 2^n} |c_n d_n - a_n| \leq \sum_{n=2}^{\infty} \frac{n^2 + n}{n^2 2^n} = \log 2. \]

The functions
\[f(z) = z - \sum_{n=2}^{\infty} nz^n, \quad g_1(z) = g_2(z) = z + \sum_{n=2}^{\infty} nz^n \]
show that the number \(\log\{2\} \) is the best possible. Therefore the proof is completed. \(\square \)

Definition 2.5 ([7]). Let \(A \) and \(B \) be arbitrary subsets of the \(\mathbb{A} \), and let \(T \) be a sequence of positive number, then \(\delta^*_T(A, B) \) is defined by
\[\delta^*_T(A, B) = \inf \{ \delta > 0 : B \subset T \delta(f) \text{ for all } f \in A \}. \]

Let us denote
(2.10) \[T(f, g) = \sum_{n=2}^{\infty} T_n |a_n - b_n|. \]

Therefore, we can write
\[\delta^*_T(A, B) = \inf \{ \delta : \exists T(f, g) < \delta \text{ for all } f \in A, g \in B \} \]
\[= \sup \{ T(f, g) : f \in A, g \in B \}, \]
where the condition \(T(f, g) < \delta \) means that the series \(T(f, g) \) is convergent and its sum is less than \(\delta \). Therefore, we see that \(\delta^*_T(A, B) = \delta^*_T(B, A) \), and we will say that \(\delta^*_T(A, B) \) is the \(T \)-factor with respect to the classes \(A \) and \(B \).

Making use of the above definition, Corollary 2.2 and the consideration below Corollary 2.2, we can state next corollary where \(T = \{ T_n \}_{n=2}^{\infty} \) is again of the form (2.1).

Corollary 2.6. The \(T \)-factor with respect to the classes \(S \) and \(S \) satisfies the following inequality
(2.11) \[0.287 \cdots \leq \delta^*_T(S, S) \leq \log\{4/\sqrt{e}\} = 0.386 \cdots. \]

It is well known that the Koebe function and all its rotations belong to each of the classes \(S, S^* \) and \(K \) (univalent, starlike and close-to-convex functions respectively), then Corollary 2.6 follows the next corollary.

Corollary 2.7. Let \(A \) and \(B \) be one of the classes \(S, S^* \) or \(K \). Then
\[\log\{4/3\} \leq \delta^*_T(A, B) \leq \log\{4/\sqrt{e}\}. \]

In the same way as above, we can express Corollary 2.3 in terms \(T \)-factor. It is done in the next result.

Corollary 2.8. The \(T \)-factor with respect to the classes \(C \) of convex functions and \(S \) satisfies the following inequality
\[0.24473 \cdots \leq \delta^*_T(C, S) \leq 0.275 \cdots. \]
Remark 2.9. Now we consider the “central” function with respect to coefficient in the class $Co(1)$ which is denoted by $f_c(z)$ and defined by

\[
(2.12) \quad f_c(z) = \frac{1}{2} \left\{ \frac{z}{1-z} + \frac{z}{(1-z)^2} \right\} = z + \sum_{n=1}^{\infty} \frac{n+1}{2} z^n, \quad |z| < 1.
\]

In [7] the authors showed that $f_c \in Co(1)$.

Theorem 2.10. The following inclusion relation holds

\[
Co(1) \subset TN_\delta(f_c),
\]

where $\delta = \log \sqrt{2/e} + \frac{\pi^2}{24} - \left(\log 2 \right)^2/4 = 0.13769 \cdots$.

Proof. Suppose that $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in Co(1)$, then from (1.2), and using (2.3) and (2.4) with $x = -1/2$, we obtain

\[
\sum_{n=2}^{\infty} T_n \left| a_n - \frac{n+1}{2} \right| \leq \frac{1}{2} \sum_{n=2}^{\infty} \frac{n-1}{n^2 2^n}
\]

\[
\leq \frac{1}{2} \left\{ \log 2 - \frac{1}{2} + f_2(1/2) - \frac{1}{2} \right\}
\]

\[
= \frac{1}{2} \left\{ \log 2 - 1 + \frac{\pi^2}{12} - \left(\log 2 \right)^2/2 \right\}
\]

\[
= 0.13769 \cdots = \delta.
\]

Acknowledgment. The authors would like to express their sincerest thanks to the referees for a careful reading and various suggestions made for the improvement of the paper.

References

Saeid Shams
Department of Mathematics
University of Urmia
Urmia, Iran
E-mail address: s.shams@urmia.ac.ir

Ali Ebadian
Department of Mathematics
Payame Noor University
Tehran, Iran
E-mail address: a.ebadian@urmia.ac.ir

Mahta Sayadiazar
Department of Mathematics
University of Urmia
Urmia, Iran
E-mail address: m.sayadiazar@yahoo.com

Janusz Sokół
Department of Mathematics
Rzeszów University of Technology
Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
E-mail address: jsokol@prz.edu.pl