DOI QR코드

DOI QR Code

FINITE ELEMENT APPROXIMATIONS OF THE OPTIMAL CONTROL PROBLEMS FOR STOCHASTIC STOKES EQUATIONS

  • Received : 2013.05.12
  • Published : 2014.05.31

Abstract

Finite element approximation solutions of the optimal control problems for stochastic Stokes equations with the forcing term perturbed by white noise are considered. Error estimates are established for the fully coupled optimality system using Brezzi-Rappaz-Raviart theory. Numerical examples are also presented to examine our theoretical results.

Keywords

References

  1. F. Abergal and R. Temmam, On some control problems in fluid mechanics, Theoret. Comput. Fluid Dynamics 1 (1990), 303-325. https://doi.org/10.1007/BF00271794
  2. R. Adams, Sobolev Spaces, Academic Press, New York, 1975.
  3. I. Babuska and P. Chatzipantelidis, On solving elliptic stochastic partial differential equations, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 37-38, 4093-4122. https://doi.org/10.1016/S0045-7825(02)00354-7
  4. I. Babuska, R. Tempone, and G. E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal. 42 (2004), no. 2, 800-825. https://doi.org/10.1137/S0036142902418680
  5. I. Babuska, R. Tempone, and G. E. Zouraris, Solving elliptic boundary value problems with uncertain coecients by the finite element method: The stochastic formulation, Comput. Methods Appl. Mech. Engrg. 194 (2005), no. 12-16, 1251-1294. https://doi.org/10.1016/j.cma.2004.02.026
  6. F. Brezzi, J. Rappaz, and P. Raviart, Finite-dimensional approximation of nonlinear problems. I. Branches of nonsingular solutions, Numer. Math. 36 (1980), 1-25. https://doi.org/10.1007/BF01395985
  7. Y. Cao, Z. Chen, and M. Gunzburger, Error analysis of finite element approximations of the stochastic Stokes equations, Adv. Comput. Math. 33 (2010), no. 2, 215-230. https://doi.org/10.1007/s10444-009-9127-6
  8. Y. Cao, H. Yang, and L. Yin, Finite element methods for semilinear elliptic stochastic partial differential equations, Numer. Math. 106 (2007), no. 2, 181-198. https://doi.org/10.1007/s00211-007-0062-5
  9. P. Ciarlet, Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
  10. P. Ciarlet, Introduction to Numerical Linear Algebra and Optimization, Cambridge, 1989.
  11. Y. Choi, H.-C. Lee, and S. D. Kim, Analysis and computations of least-squares method for optimal control problems for the Stokes equations, J. Korean Math. Soc. 46 (2009), no. 5, 1007-1025. https://doi.org/10.4134/JKMS.2009.46.5.1007
  12. Y. Choi, H.-C. Lee, and B.-C. Shin, A least-square/penalty method for distributed optimal control problems for Stokes equations, Comput. Math. Appl. 53 (2007), no. 11, 1672-1685. https://doi.org/10.1016/j.camwa.2007.01.009
  13. R. G. Ghanem and P. D. Spanos, Stochasic Finite Elements: A spectral approach, Springer-Verlag, 1991.
  14. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer, Berlin, 1986.
  15. M. D. Gunzburger and L. S. Hou, Finite-dimensional approximation of a class of constrained nonlinear optimal control problems, SIAM J. Control. Optim. 34 (1996), no. 3, 1001-1043. https://doi.org/10.1137/S0363012994262361
  16. M. D. Gunzburger, L. S. Hou, and T. P. Svobodny, Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with distributed and Neumann controls, Math. Comp. 57 (1991), no. 195, 123-151. https://doi.org/10.1090/S0025-5718-1991-1079020-5
  17. M. Gunzburger, H.-C. Lee, and J. Lee, Error estimates of stochastic optimal neumann boundary control problems, SIAM J. Numer. Anal. 49 (2011), no. 4, 1532-1552. https://doi.org/10.1137/100801731
  18. M. D. Gunzburger and S. Manservisi, Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed control, SIAM J. Numer. Anal. 37 (2000), no. 5, 1481-1512. https://doi.org/10.1137/S0036142997329414
  19. L. S. Hou, J. Lee, and H. Manouzi, Finite element approximations of stochastic optimal control problems constrained by stochastic elliptic PDEs, J. Math. Anal. Appl. 384 (2011), no. 1, 87-103. https://doi.org/10.1016/j.jmaa.2010.07.036
  20. H. -C. Lee, Analysis and computational methods of Dirichlet boundary optimal control problems for 2D Boussinesq equations, Adv. Comput. Math. 19 (2003), no. 1-3, 255-275. https://doi.org/10.1023/A:1022872602498
  21. H.-C. Lee and Y. Choi, A least-squares method for optimal control problems for a secondorder elliptic systems in two dimensions, J. Math. Anal. Appl. 242 (2000), no. 1, 105-128. https://doi.org/10.1006/jmaa.1999.6658
  22. H.-C. Lee and O. Y. Imanuvilov, Analysis pf optimal control problems for 2D stationary Boussinesq equations, J. Math. Anal. Appl. 242 (2000), 191-211. https://doi.org/10.1006/jmaa.1999.6651
  23. H.-C. Lee and S. Kim, Finite element approximation and computations of optimal dirichlet boundary control problems for the boussinesq equations, J. Korean Math. Soc. 41 (2004), no. 4, 681-715. https://doi.org/10.4134/JKMS.2004.41.4.681
  24. J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, New York, 1971.
  25. H. Manouzi, A finite element approximation of linear stochastic PDEs driven by multiplicative white noise, Int. J. Comput. Math. 85 (2008), no. 3-4, 527-546. https://doi.org/10.1080/00207160701210133
  26. H. Manouzi and L. S. Hou, An optimal control problem for stochastic linear PDEs driven by a Gaussian white noise, 629-636, Numerical Mathematics and Advanced Applications, Springer Berlin Heidelberg, 2008.
  27. G. Stefanou, The stochastic finite element method: Past, present, and future, Comput. Methods Appl. Mech. Engrg. 198 (2009), Issues 9-12, 1031-1051. https://doi.org/10.1016/j.cma.2008.11.007
  28. R. Temam, Nonlinear Functional Analysis and Navier-Stokes Equations, SIAM, Philadelphia, 1983.