DOI QR코드

DOI QR Code

Nonparametric Bayesian estimation on the exponentiated inverse Weibull distribution with record values

  • Seo, Jung In (Department of Statistics, Yeungnam University) ;
  • Kim, Yongku (Department of Statistics, Kyungpook National University)
  • Received : 2014.03.06
  • Accepted : 2014.04.03
  • Published : 2014.05.31

Abstract

The inverse Weibull distribution (IWD) is the complementary Weibull distribution and plays an important role in many application areas. In Bayesian analysis, Soland's method can be considered to avoid computational complexities. One limitation of this approach is that parameters of interest are restricted to a finite number of values. This paper introduce nonparametric Bayesian estimator in the context of record statistics values from the exponentiated inverse Weibull distribution (EIWD). In stead of Soland's conjugate piror, stick-breaking prior is considered and the corresponding Bayesian estimators under the squared error loss function (quadratic loss) and LINEX loss function are obtained and compared with other estimators. The results may be of interest especially when only record values are stored.

Keywords

References

  1. Ali, M., Pal, M. and Woo, J. (2007). Some exponentiated distributions. The Korean Communications in Statistics, 14, 93-109. https://doi.org/10.5351/CKSS.2007.14.1.093
  2. Balakrishnan, N., Ahsanullah, M. and Chan, P. S. (1992). Relations for single and product moments of record values from Gumbel distribution. Statistical and Probability Letters, 15, 223-227. https://doi.org/10.1016/0167-7152(92)90193-9
  3. Calabria, R. and Pulcini, G. (1994). Bayes 2-sample prediction for the inverse Weibull distribution. Communications in Statistics - Theory and Methods, 23, 1811-1824. https://doi.org/10.1080/03610929408831356
  4. Chandler, K. N. (1952). The distribution and frequency of record values. Journal of the Royal Statistical Society B, 14, 220-228.
  5. Dumonceaux, R. and Antle, C. E. (1973). Discrimination between the lognormal and Weibull distribution. Technometrics, 15, 923-926. https://doi.org/10.1080/00401706.1973.10489124
  6. Escobar, M. D. (1994). Estimating normal means with a Dirichlet process prior. Journal of the American Statistical Association, 89, 268-277. https://doi.org/10.1080/01621459.1994.10476468
  7. Escobar, M. D. and West, M. (1995). Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association, 90, 577-588. https://doi.org/10.1080/01621459.1995.10476550
  8. Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1, 209-230. https://doi.org/10.1214/aos/1176342360
  9. Ishwaran, H. and Zarepour, M. (2000). Markov chain Monte Carlo in approximate Dirichlet and beta two-parameter process hierarchical models. Biometrika, 87, 371-390. https://doi.org/10.1093/biomet/87.2.371
  10. Ishwaran, H. and James, L. F. (2001). Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical Association, 96, 161-173. https://doi.org/10.1198/016214501750332758
  11. Kim, Y., Seo, J. I. and Kang, S. B. (2012). Bayesian estimators using record statistics of exponentiated inverse Weibull distribution. Communications of the Korean Statistical Society, 19, 479-493. https://doi.org/10.5351/CKSS.2012.19.3.479
  12. MacEachern, S. N. (1994). Estimating normal means with a conjugate style Dirichlet process prior. Communications in Statistics simulations, 23, 727-741. https://doi.org/10.1080/03610919408813196
  13. Mahmoud, M. A. W., Sultan, K. S. and Amer, S. M. (2003). Order statistics from inverseWeibull distribution and associated inference. Computational Statistics & Data Analysis, 42, 149-163. https://doi.org/10.1016/S0167-9473(02)00151-2
  14. Maswadah, M. (2003). Conditional confidence interval estimation for the inverse Weibull distribution based on censored generalized order statistics. Journal of statistical Computation and Simulation, 73, 887-898. https://doi.org/10.1080/0094965031000099140
  15. Nelson, W. B. (1982). Applied life data analysis, John Willey & Sons, New York.
  16. Soland, R. M. (1969). Bayesian analysis of Weibull process with unknown scale and shape parameters. IEEE Transaction on Reliability, 18, 181-184.
  17. Soliman, A. A., Abd Ellah, A. H. and Sultan, K. S. (2006). Comparison of estimates using record statistics from Weibull model: Bayesian and non-Bayesian approaches. Computational Statistics & Data Analysis, 51, 2065-2077. https://doi.org/10.1016/j.csda.2005.12.020
  18. Sultan, K. S. (2008). Bayesian estimates based on record values from the inverse Weibull lifetime model. Quality Technology & Quantitative Management, 5, 363-374. https://doi.org/10.1080/16843703.2008.11673408
  19. Varian, H. R. (1975). A Bayesian approach to real estate assessment. In Studies in Bayesian Econometrics and Statistics in Honor of Leonard J. Savage, edited by S. E. Feinberg and A. Zellner, North Holland, Amsterdam, 195-208.
  20. Zellner, A. (1986). Bayesian estimation and prediction using asymmetric loss function. Journal of American Statistical Association, 81, 446-451. https://doi.org/10.1080/01621459.1986.10478289

Cited by

  1. Density estimation of summer extreme temperature over South Korea using mixtures of conditional autoregressive species sampling model vol.27, pp.5, 2016, https://doi.org/10.7465/jkdi.2016.27.5.1155