Abstract
In this paper, I seek the chromatic number, the maximum number of colors necessary when adjoining vertices in the plane separated apart at the distance of 1 shall receive distinct colors. The upper limit of the chromatic number has been widely accepted as $4{\leq}{\chi}(G){\leq}7$ to which Hadwiger-Nelson proposed ${\chi}(G){\leq}7$ and Soifer ${\chi}(G){\leq}9$ I firstly propose an algorithm that obtains the minimum necessary chromatic number and show that ${\chi}(G)=3$ is attainable by determining the chromatic number for Hadwiger-Nelson's hexagonal graph. The proposed algorithm obtains a chromatic number of ${\chi}(G)=4$ assuming a Hadwiger-Nelson's hexagonal graph of 12 adjoining vertices, and again ${\chi}(G)=4$ for Soifer's square graph of 8 adjoining vertices. assert. Based on the results as such that this algorithm suggests the maximum chromatic number of a planar graph is ${\chi}(G)=4$ using simple assigned rule of polynomial time complexity to color for a vertex with minimum degree.
본 논문은 평면상의 거리가 1인 인접 정점들에 대해 서로 다른 색을 칠할 경우 최대로 필요한 색인 채색수를 찾는 문제를 연구하였다. 지금까지 채색수 상한 값은 $4{\leq}{\chi}(G){\leq}7$로 알려져 있으며, Hadwiger-Nelson은 ${\chi}(G){\leq}7$, Soifer는 ${\chi}(G){\leq}9$를 제안하였다. 먼저, 최소로 필요로 하는 채색수를 구하는 알고리즘을 제안하고, Hadwiger-Nelson의 정육각형 그래프를 대상으로 채색수를 구한 결과 ${\chi}(G)=3$이 될 수 있음을 보였다. Hadwiger-Nelson의 정육각형 그래프를 12개 인접 정점으로 가정할 경우 ${\chi}(G)=4$를 구하였다. 또한, Soifer의 8개 인접 정점 정사각형 그래프에 대해 채색수를 구한 결과 ${\chi}(G)=4$임을 보였다. 결국, 제안된 알고리즘은 최소 차수 정점부터 색을 배정하는 단순한 다항시간 규칙을 적용하여 평면의 최대 채색수는 ${\chi}(G)=4$임을 제안한다.