DOI QR코드

DOI QR Code

평면의 채색수 알고리즘

The Chromatic Number Algorithm in a Planar Graph

  • 이상운 (강릉원주대학교 멀티미디어공학과)
  • Lee, Sang-Un (Dept. of Multimedia Eng., Gangneung-Wonju National University)
  • 투고 : 2014.03.12
  • 심사 : 2014.04.22
  • 발행 : 2014.05.31

초록

본 논문은 평면상의 거리가 1인 인접 정점들에 대해 서로 다른 색을 칠할 경우 최대로 필요한 색인 채색수를 찾는 문제를 연구하였다. 지금까지 채색수 상한 값은 $4{\leq}{\chi}(G){\leq}7$로 알려져 있으며, Hadwiger-Nelson은 ${\chi}(G){\leq}7$, Soifer는 ${\chi}(G){\leq}9$를 제안하였다. 먼저, 최소로 필요로 하는 채색수를 구하는 알고리즘을 제안하고, Hadwiger-Nelson의 정육각형 그래프를 대상으로 채색수를 구한 결과 ${\chi}(G)=3$이 될 수 있음을 보였다. Hadwiger-Nelson의 정육각형 그래프를 12개 인접 정점으로 가정할 경우 ${\chi}(G)=4$를 구하였다. 또한, Soifer의 8개 인접 정점 정사각형 그래프에 대해 채색수를 구한 결과 ${\chi}(G)=4$임을 보였다. 결국, 제안된 알고리즘은 최소 차수 정점부터 색을 배정하는 단순한 다항시간 규칙을 적용하여 평면의 최대 채색수는 ${\chi}(G)=4$임을 제안한다.

In this paper, I seek the chromatic number, the maximum number of colors necessary when adjoining vertices in the plane separated apart at the distance of 1 shall receive distinct colors. The upper limit of the chromatic number has been widely accepted as $4{\leq}{\chi}(G){\leq}7$ to which Hadwiger-Nelson proposed ${\chi}(G){\leq}7$ and Soifer ${\chi}(G){\leq}9$ I firstly propose an algorithm that obtains the minimum necessary chromatic number and show that ${\chi}(G)=3$ is attainable by determining the chromatic number for Hadwiger-Nelson's hexagonal graph. The proposed algorithm obtains a chromatic number of ${\chi}(G)=4$ assuming a Hadwiger-Nelson's hexagonal graph of 12 adjoining vertices, and again ${\chi}(G)=4$ for Soifer's square graph of 8 adjoining vertices. assert. Based on the results as such that this algorithm suggests the maximum chromatic number of a planar graph is ${\chi}(G)=4$ using simple assigned rule of polynomial time complexity to color for a vertex with minimum degree.

키워드

참고문헌

  1. T. R. Jensen and B. Toft, "25 Pretty Graph Colouring Problems," Discrete Mathematics, Vol. 299, No. 1-3, pp. 167-169, Feb. 2001.
  2. Wikipedia, "Hadwiger-Nelson Problem," http://en.wikipedia.org/wiki/Hadwiger-Nelson_problem, Wikimedia Foundation Inc., 2014.
  3. E. W. Weisstein, "Hadwiger-Nelson Problem" http://mathworld.wolfram.com/Hadwiger-NelsonProblem.html, MathWorld, Wolfram Research, Inc., 2014.
  4. G. Exoo, "Epsilon Unit Distance Graphs," Discrete and Computational Geometry, Vol. 33, No. 1, pp. 117-124, Jan. 2005. https://doi.org/10.1007/s00454-004-1092-8
  5. M. Payne, "Unit Distance Colouring Problems," Bachelors Thesis, Monash University, 2007.
  6. D. Eppstein, "Geometric Graph Coloring Problems," Geometry Junkyard, http://www.ics.uci.edu/-eppstein/junkyard/geom-color.html, Jul. 2009.
  7. D. A. Meyer, "Coloring, Quantum Mechanics, and Euclid," Dept. of Mathematics, University of California/San Diago, Dec. 2003.
  8. H. Hadwiger, "Uberdeckung des Euklidischen Raumes Durch Kongruentre Mengen," Portugal Mathematics, Vol. 4, pp. 238-242, 1945.
  9. A. Sofier, "The Mathematical Coloring Book: Mathematics of Coloring and the Colorful Life of Its Creators," Springer, 2009.
  10. L. Lovasz, "Geometric Representations of Graphs," Institute of Mathematics, Eotvos Lorand University, Budapest, 2007.
  11. E. W. Weisstein, "Unit Distance Graph," http://mathworld.wolfram.com/UnitDistanceGraph.html, MathWorld, Wolfram Research, Inc., 2014.
  12. G. K. Kristiansen, "Unit Distance Graphs in a Hexagonal Geometry," http://home20.inet.tele.dk/krisma/unit_distance_graphs.htm, Mar. 2005.
  13. D. Coulson, "On the Chromatic Number of Plane Tilings," Journal of the Australian Mathematical Society, Vol. 77, pp. 191-196, Oct. 2004. https://doi.org/10.1017/S1446788700013574
  14. I. Hoffman and A. Soifer, "Another Six-coloring of the Plane," Discrete Mathematics, Vol. 150, No. 1-3, pp. 427-429, Apr. 1996. https://doi.org/10.1016/0012-365X(95)00210-N
  15. S. U. Lee and M. B. Choi, "A Polynomial Time Algorithm for Vertex Coloring Problem," Journal of Korea Society of Computer Information, Vol. 16, No. 7, pp. 85-93, Jul. 2011. https://doi.org/10.9708/jksci.2011.16.7.085
  16. S. U. Lee, "A Polynomial Time Algorithm for Edge Coloring Problem," Journal of Korea Society of Computer Information, Vol. 11, No. 11, pp. 159-165, Nov. 2013. https://doi.org/10.9708/jksci.2013.18.11.159
  17. S. U. Lee, "The Four Color Algorithm," Journal of Korea Society of Computer Information, Vol. 18, No. 5, pp. 113-120, May. 2013. https://doi.org/10.9708/jksci.2013.18.5.113