DOI QR코드

DOI QR Code

Estimation of POC Export Fluxes Using 234Th/238U Disequilibria in the Amundsen Sea, Antarctica; Preliminary Result

남극 아문젠해에서 234Th/238U 비평형법을 사용한 유광대에서 심층으로의 입자상 유기탄소 침강플럭스 추정; 예비결과

  • Kim, Mi Seon (Department of Ocean Environmental Science, Chungnam National University) ;
  • Choi, Man Sik (Department of Ocean Environmental Science, Chungnam National University) ;
  • Lee, Sang Heon (Department of Oceanography, Pusan National University) ;
  • Lee, Sang Hoon (Korea Polar Research Institute (KOPRI)) ;
  • Rhee, Tae Siek (Korea Polar Research Institute (KOPRI)) ;
  • Hahm, Doshik (Korea Polar Research Institute (KOPRI))
  • 김미선 (충남대학교 해양환경과학과) ;
  • 최만식 (충남대학교 해양환경과학과) ;
  • 이상헌 (부산대학교 해양학과) ;
  • 이상훈 (한국해양과학기술원 부설 극지연구소) ;
  • 이태식 (한국해양과학기술원 부설 극지연구소) ;
  • 함도식 (한국해양과학기술원 부설 극지연구소)
  • Received : 2013.11.04
  • Accepted : 2014.03.03
  • Published : 2014.05.28

Abstract

In order to understand the carbon cycle in the Amundsen Sea of the Southern Ocean, the export fluxes of particulate organic carbon from the euphotic zone to deep water estimated using ${\psi}$/${\psi}$ disequilibrium method. Seawaters in 14 water columns were collected during February and March 2012, and analyzed for total and dissolved ${\psi}$, and particulate organic carbon. Total ${\psi}$ activities in the water column showed deficiency and excess relative to those of ${\psi}$ depending on the water depth. Deficiency of total ${\psi}$ in the euphotic zone showed mirror images both with chlorophyll-a and fluorescence, and was consistent with the loss of nitrate, which indicated the effect of biological activity. In addition, deficiency of total ${\psi}$ from deep water was associated with the increase of total dissolvable Fe/Mn concentration. Excess total ${\psi}$ activity presented below the euphotic zone might be related to particulate ${\psi}$ concentrated in this water depth. Mean export flux of ${\psi}$ estimated using the steady state model was $867{\pm}246dpmm^{-2}day^{-1}$. Mean export flux of particulate organic carbon, which were estimated by the product of total ${\psi}$ flux and ratio of POC/${\psi}$ ($7.08{\pm}4.27{\mu}molCdpm^{-1}$) in the sinking particles, was $5.9{\pm}3.9mmolCm^{-2}day^{-1}$. These fluxes were similar levels to those in the Weddell Sea during February and March 2008. Export ratios (ThE) relative to the primary production in the euphotic zone were in the range of 3-54% (av. 28%).

남극 아문젠해의 탄소순환을 이해하기 위해서 표층에서 심층으로의 입자상 유기탄소 침강플럭스를 ${\psi}$/${\psi}$ 비평형법을 이용하여 추정하였다. 2012년 2월과 3월에 걸쳐 남극 아문젠해의 총 14개 정점에서 깊이별로 해수시료를 채취하였고, 총 ${\psi}$, 용존 ${\psi}$ 및 입자상 유기탄소를 분석하였다. 수심에 따라 총 ${\psi}$의 활동도 농도는 ${\psi}$에 비하여 결핍과 과잉을 나타내었다. 유광대에서 총 ${\psi}$의 결핍 정도는 엽록소 및 형광도와 거울상을 나타내고, 질산염 제거와 수반되어 나타나므로 생물 활동의 영향으로 파악되었다. 심층에서 일어나는 총 ${\psi}$ 결핍은 Fe/Mn 산화물에 의해 이루어지는 것으로 해석되었다. 유광대 바로 아래의 수층에서 나타나는 총 ${\psi}$ 과잉은 재광물화 작용보다는 이 깊이에 집적된 입자상 ${\psi}$에 기인하였다. 정상상태 모델로 추정한 ${\psi}$의 침강플럭스는 평균 $867{\pm}246dpmm^{-2}day^{-1}$이었으며, 유광대에서 질소와 인의 결핍 총량과 밀접한 관련성을 보였다. 입자상 유기탄소와 ${\psi}$의 비율($7.08{\pm}4.27{\mu}molCdpm^{-1}$)을 이용하여 추정한 입자상 유기탄소의 침강플럭스는 평균 $5.9{\pm}3.9mmolCm^{-2}day^{-1}$으로 나타났는데 이 값은 2-3월의 웨델해와 유사한 수준이었다. 입자상 유기탄소 플럭스와 일차생산력의 비율로 나타낸 생물 펌프의 효율(ThE)은 3-54%(평균 28%) 범위였다.

Keywords

References

  1. Arrigo, K.R. and G.L. van Dijken, 2003. Phytoplankton dynamics within 37 Antarctic coastal polynya systems. J. Geophys. Res., 108(C8): 3271, doi:10.1029/2002JC001739.
  2. Arrigo, K.R., K.E. Lowry and G.L. van Dijken, 2012. Annual changes in sea ice and phytoplankton in polynyas of the Amundsen Sea, Antarctica. Deep-Sea Res. II, 71-76: 5-15. https://doi.org/10.1016/j.dsr2.2012.03.006
  3. Benitez-Nelson, C., K.O. Buesseler, D. Karl and J. Andrews, 2001. A time-series study of particular matter export in the North Pacific subtropical gyre based upon $^{234}Th/^{238}U$ disequilibrium. Deep-Sea Res. I, 48: 2595-2611. https://doi.org/10.1016/S0967-0637(01)00032-2
  4. Buesseler, K.O., M.P. Bacon, J.K. Cochran and H.D. Livingston, 1992. Carbon and nitrogen export during the JGOFS North Atlantic Bloom experiment estimated from $^{234}Th:^{238}U$ disequilibria. Deep-Sea Res. I, 39(7-8): 1115-1137 https://doi.org/10.1016/0198-0149(92)90060-7
  5. Buesseler, K.O., 1991. Do upper-ocean sediment traps provide an accurate record of particle flux? Nature, 353: 420-423. https://doi.org/10.1038/353420a0
  6. Buesseler, K.O., 1998. The decoupling of production and particulate export in the surface ocean, Global Biogeochem. Cycles, 12(2): 297-310. https://doi.org/10.1029/97GB03366
  7. Buesseler, K.O., A.F. Michaels, D.A. Siegel and A.H. Knap, 1994 A three dimensional time-dependent approach to calibrating sediment trap fluxes. Global Biogeochem. Cycles, 8(2): 179-193. https://doi.org/10.1029/94GB00207
  8. Buesseler, K.O., C.R. Benitez-Nelson, S.B. Moran, A. Burd, M. Charette, J.K. Cochran, L. Coppola, N.S. Fisher, S.W. Fowler, W.D. Gardner, L.D. Guo, O. Gustafsson, C. Lamborg, P. Masque, J.C. Miquel, U. Passow, P.H. Santschi, N. Savoye, G. Stewart and T. Trull, 2006. An assessment of particulate organic carbon to thorium-234 ratios in the ocean and their impact on the application of $^{234}Th$ as a POC flux proxy. Mar. Chem., 100(3-4): 213-233. https://doi.org/10.1016/j.marchem.2005.10.013
  9. Buesseler, K.O., J.E. Andrews, S.M. Pike, M.A. Charette, L.E. Goldson, M.A. Brzezinski, and V. P. Lance, 2005. Particle export during the Southern Ocean Iron Experiment (SOFeX). Limnol. Oceanogr., 50(1): 311-327. https://doi.org/10.4319/lo.2005.50.1.0311
  10. Buesseler, K.O., L. Ball, J. Andrews, J.K. Cochran, D.J. Hirschberg, A. Fleer, M.P. Bacon and M. Brzezinski, 2001. Upper ocean export of particulate organic carbon and biogenic silica in the Southern Ocean along $170^{\circ}W$. Deep-Sea Res. II, 48: 4275-4297. https://doi.org/10.1016/S0967-0645(01)00089-3
  11. Buesseler, K.O., R.T. Barber, M.L. Dickson, M.R. Hiscock, J.K. Moore and R. Sambrotto, 2003. The effect of marginal ice-edge dynamics on production and export in the Southern Ocean along $170^{\circ}W$. Deep-Sea Res. II, 50(3-4): 579-603. https://doi.org/10.1016/S0967-0645(02)00585-4
  12. Buesseler, K.O., S. Pike, K. Maiti, C.H. Lamborg, D.A. Siegel and T.W. Trull, 2009. Thorium-234 as a tracer of spatial, temporal and vertical variability in particle flux in the North Pacific. Deep-Sea Res. I, 56(7): 1143-1167. https://doi.org/10.1016/j.dsr.2009.04.001
  13. Cai, P., M. Dai, D. Lv and W. Chen, 2006. An improvement in the small-volume technique for determining thorium-234 in seawater. Mar. Chem., 100(3-4): 282-288. https://doi.org/10.1016/j.marchem.2005.10.016
  14. Coale, K.H. and K.W. Bruland, 1987. Oceanic stratified euphotic zone as elucidated by $^{234}Th:^{238}U$ disequilibria. Limnol. Oceanogr., 32(1): 189-200. https://doi.org/10.4319/lo.1987.32.1.0189
  15. Coale, K.H., 1990. Labyrinth of doom: a device to minimize the bswimmer Q component in sediment trap collections. Limnol. Oceanogr., 35(6): 1376-1381. https://doi.org/10.4319/lo.1990.35.6.1376
  16. Cochran, J.K., K.O. Buesseler, M.P. Bacon, H.W. Wang, L. Ball, D.J. Hirschberg, J. Andrews, G. Crossin and A. Fleer, 2000. Shortlived thorium isotopes ($^{234}Th,\;^{238}U$) as indicators of POC export and particle cycling in the Ross Sea, Southern Ocean. Deep-Sea Res. II, 47: 3451-3490. https://doi.org/10.1016/S0967-0645(00)00075-8
  17. Coppola, L., M. Roy-Barman, S. Mulsowd, P. Povinecd and C. Jeandela, 2005. Low particulate organic carbon export in the frontal zone of the Southern Ocean (Indian sector) revealed by $^{234}Th$. Deep-Sea Res. I, 52: 51-68. https://doi.org/10.1016/j.dsr.2004.07.020
  18. Dunne, J.P., R.A. Armstrong, A. Gnanadesikan and J.L. Sarmiento, 2005. Empirical and mechanistic models for the particle export ratio. Global Biogeochem. Cycles, 19: GB4026, doi:10.1029/2004GB002390.
  19. Gardner, W.D., M.J. Richardson, C.A. Carlson, D.A. Hansell and A.V. Mishonov, 2003. Determining true particulate organic carbon: bottles, pumps and methodologies. Deep-Sea Res. II, 50(3-4): 655-692. https://doi.org/10.1016/S0967-0645(02)00589-1
  20. Gerringa, L.J.A., A.-C. Alderkamp, P. Laan, C.-E. Thuroczy, H.J.W. De Baar, M.M. Mills, G.L. van Dijken, H. van Haren and K.R. Arrigo, 2012. Iron from melting glaciers fuels the phytoplankton blooms in Amundsen Sea (Southern Ocean): Iron biogeochemistry. Deep-Sea Res. II, 71-76: 16-31. https://doi.org/10.1016/j.dsr2.2012.03.007
  21. Giuliani, S.O., R.M. Frignani and L.G. Bellucci, 2007. Short time scale variations of $^{234}Th/^{238}U$ disequilibrium related to mesoscale variability on the continental slope of the Gulf of Lions (France). Mar. Chem., 106(3-4): 403-418. https://doi.org/10.1016/j.marchem.2007.03.007
  22. Giulivi, C.F. and S.S. Jacobs, 1997. Oceanographic Data in the Amundsen and Bellingshausen Seas: N.B. Palmer cruise 9402, February-March 1994. Technical Report LDEO-97-3. Lamont-Doherty Earth Obs. Of Columbia Univ., Palisades, N.Y., 330pp.
  23. Hellmer, H.H., S.S. Jacobs and A. Jenkins, 1998. Oceanic erosion of a floating Antarctic glacier in the Amundsen Sea. Antarct. Res. Ser., 75: 83-99. https://doi.org/10.1029/AR075p0083
  24. Henson, S., R. Sanders and E. Madsen, 2012. Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean. Global Biogeochem. Cycles, 26: GB1028, doi:10.1029/2011GB004099.
  25. Hung, C.-C., L. Guo., K.A. Roberts and P.H. Santschi, 2004. Upper ocean carbon flux determined by the $^{234}Th$ approach and sediment traps using size-fractionated POC and $^{234}Th$ data from the Gulf of Mexico. Geochem. J., 38: 601-611. https://doi.org/10.2343/geochemj.38.601
  26. Jacobs, S.S. and J.C. Comiso, 1997. Climate variability in the Amundsen and Bellingshausen sea. J. Clim., 10: 697-709. https://doi.org/10.1175/1520-0442(1997)010<0697:CVITAA>2.0.CO;2
  27. Jacobs, S.S., A. Jenkins, C.F. Giulivi and P. Dutrieux, 2011. Stronger ocean circulation and increasing melting under Pine Island Glacier ice shelf. Nature Geosci., 4: 519-523. https://doi.org/10.1038/ngeo1188
  28. Jacobs, S.S., H.H Hellmer and A. Jenkins, 1996. Antarctic ice sheet melting in the Southeast Pacific. Geophys. Res. Lett., 23: 957-960. https://doi.org/10.1029/96GL00723
  29. Jacquet, S.H.M., P.J. Lam, T. Trull and F. Dehairs, 2011. Carbon export production in the subantarctic zone and polar front zone south of Tasmania. Deep-Sea Res. II, 58(21-22): 2277-2292. https://doi.org/10.1016/j.dsr2.2011.05.035
  30. Jenkins, A., D.G. Vaughan, S.S. Jacobs, H.H. Hellmer and J.R.Keys, 1997. Glaciological and oceanographic evidence of high melt rates beneath Pine island glacier, west Antarctica. J. Glaciology 43: 114-121. https://doi.org/10.1017/S0022143000002872
  31. Kim, D.S., M.S. Choi, H.Y. Oh, Y.H. Song, J.H. Noh and K.H. Kim, 2011. Seasonal export fluxes of particulate organic carbon from $^{234}Th/^{238}U$ disequilibrium measurements in the Ulleung Basin (Tsushima Basin) of the East Sea (Sea of Japan). J. Oceanogr., 67: 577-588 https://doi.org/10.1007/s10872-011-0058-8
  32. Laws, E.A., P.G. Falkowski, W.O. Smith, H. Ducklow and J.J. McCarthy, 2000. Temperature effects on export production in the open ocean. Global Biogeochem. Cycles, 14(4): 1231-1246. https://doi.org/10.1029/1999GB001229
  33. Lee, S.H., B.K. Kim, M.S. Yun, H.T. Joo, E.J. Yang, Y.N Kim, H.C. Shin and S.H. Lee, 2012. Spatial distribution of phytoplankton productivity in the Amundsen Sea, Antarctica. Polar Biol. 35: 1721-1733. https://doi.org/10.1007/s00300-012-1220-5
  34. Liu, Z., G. Stewart, J.K. Cochran, C. Lee, R.A. Armstrong, D.J. Hirschberg, B. Gasser, and J.-C. Miquel, 2005 Why do POC concentrations measured using Niskin bottle collections differ from those using in situ pumps? Deep-Sea Res. I, 52: 1324-1344. https://doi.org/10.1016/j.dsr.2005.02.005
  35. Martin, J.H., G.A. Knauer, D.M. Karl, and W.W. Broenkow, 1987. VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res. I, 34: 267-285. https://doi.org/10.1016/0198-0149(87)90086-0
  36. Middag, R., C. van Slooten, H.J.W. De Baar and P. Laan, 2011a. Dissolved aluminium in the Southern Ocean. Deep-Sea Res. II, 58: 2647-2660. https://doi.org/10.1016/j.dsr2.2011.03.001
  37. Middag, R., H.J.W. De Baar, P. Laan, Cai, and J.C. van Ooijen, 2011b. Dissolved manganese in the Southern Ocean. Deep-Sea Res. II, 58: 2661-2677. https://doi.org/10.1016/j.dsr2.2010.10.043
  38. Moran, S.B., S.E. Weinstein, H.N. Edmonds, J.N. Smith, R.P. Kelly, M.E.Q. Pilson and W.G. Harrison, 2003. Does $^{234}Th/^{238}U$ disequilibrium provide an accurate record of the export flux of particulate organic carbon form the upper ocean? Limnol. Oceanogr., 48(3): 1018-1029. https://doi.org/10.4319/lo.2003.48.3.1018
  39. Moran, S.B., K.M. Ellis and J.N. Smith, 1997. $^{234}Th/^{238}U$ disequilibrium in the central Arctic Ocean: implications for particulate organic carbon export. Deep-Sea Res. II, 44(8): 1593-1606. https://doi.org/10.1016/S0967-0645(97)00049-0
  40. Moran, S.B., M.A. Charette, S.M. Pike and C.A. Wicklund, 1999. Differences in seawater particulate organic carbon concentration in samples collected using small-volume and large-volume methods: the importance of DOC adsorption to the filter blank. Mar. Chem., 67: 33-42. https://doi.org/10.1016/S0304-4203(99)00047-X
  41. Moran, S.B., R.P. Kelly, K. Hagstrom, J.N. Smith, J.M. Grebmeier, L.W. Cooper, G.F. Cota, J.J. Walsh, N.R. Bates, D.A. Hansell, W. Maslowski, R.P. Nelson and S. Mulsow, 2005. Seasonal changes in POC export flux in the Chukchi Sea and implications for water column-benthic coupling in Arctic shelves. Deep-Sea Res. II, 52 (24-26): 3427-3451. https://doi.org/10.1016/j.dsr2.2005.09.011
  42. Murray, J.W., J. Young, J. Newton, J. Dunne, T. Chapin, B. Paul and J.J. McCarthy, 1996. Export flux of particulate organic carbon from the central equatorial Pacific determined using a combined drifting trap-$^{234}Th$ approach. Deep-Sea Res. II, 43: 1095-1132. https://doi.org/10.1016/0967-0645(96)00036-7
  43. Nitsche, F.O., S.S. Jacobs, R.D. Larter and K. Gohl, 2007. Bathymetry of the Amundsen Sea continental shelf: implications for geology, oceanography, and glaciology. Geochem. Geophys. Geosyst., 8(10): Q10009, doi:10.1029/2007GC001694.
  44. Owens, S.A., K.O. Buesseler and K.W.W. Sims, 2011. Re-evaluating the $^{238}U$-salinity relationship in seawater: Implications for the $^{238}U$-$^{234}Th$ disequilibrium method. Mar. Chem., 127(1-4): 31-39. https://doi.org/10.1016/j.marchem.2011.07.005
  45. Planquette, H., R.M. Sherrell, S. Stammerjohn and M.P. Field, 2013. Particulate iron delivery to the water column of the Amundsen Sea, Antarctica. Mar. Chem., 153: 15-30. https://doi.org/10.1016/j.marchem.2013.04.006
  46. Pritchard, H.D., R.J. Arthern, D.G. Vaughan and L.A. Edwards, 2009. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461: 971-975. https://doi.org/10.1038/nature08471
  47. Rutgers van der Loeff, M., M.M. Sarin, M. Baskaran, C. Benitez-Nelson, K.O. Buesseler, M. Charette, M. Dai, O. Gustafsson, P. Masque, P.J. Morris, K. Orlandini, A. Rodriguez y Baena, N. Savoye, S. Schmidt, R. Turnewitsch, I. Voge and J.T. Waples, 2006. A review of present techniques and methodological advances in analyzing $^{234}Th$ in aquatic systems. Mar. Chem., 100(3-4): 190-212. https://doi.org/10.1016/j.marchem.2005.10.012
  48. Rutgers van der Loeff, M., P.H. Cai, I. Stimac, A. Bracher, R. Middag, M.B. Klunder and S.M.A.C. van Heuven, 2011. $^{234}Th$ in surface waters: Distribution of particle export flux across the Antarctic Circumpolar Current and in the Weddell Sea during the GEOTRACES expedition ZERO and DRAKE. Deep-Sea Res. II, 58(25-26): 2749-2766. https://doi.org/10.1016/j.dsr2.2011.02.004
  49. Savoye, N., C. Benitez-Nelson, A.B. Burd, J.K. Cochran, M. Charette, K.O. Buesseler, G.A. Jackson, M. Roy-Barman, S. Schmidt and M. Elskens, 2006. $^{234}Th$ sorption and export models in the water column: A review. Mar. Chem., 100(3-4): 234-249. https://doi.org/10.1016/j.marchem.2005.10.014
  50. Savoye, N., T.W. Trull, S.H. M. Jacquet, J. Navez and F. Dehairs, 2008. $^{234}Th$-based export fluxes during a natural iron fertilization experiment in the Southern Ocean (KEOPS). Deep-Sea Res. II, 55(5-7): 841-855. https://doi.org/10.1016/j.dsr2.2007.12.036
  51. Shimmield, G.B., G.D. Ritchie and T.W. Fileman, 1995. The impact of marginal ice zone processes on the distribution of $^{210}Pb$, $^{210}Po$ and $^{234}Th$ and implications for new production in the Bellingshausen Sea, Antarctica. Deep-Sea Res. II, 42(4-5): 1313-1335.
  52. Sohrin, Y., S. Urushihara, S. Nakatsuka, T. Kono, E. Higo, K. Norisuye, T. Minami and S. Umetani, 2008. Multielemental Determination of GEOTRACES Key Trace Metals in Seawater by ICPMS after Preconcentration Using an Ethylenediaminetriacetic Acid Chelating Resin. Anal. Chem., 80(16): 6267-6273. https://doi.org/10.1021/ac800500f
  53. Takahashi, T., S.C. Sutherland, R. Wanninkhof, C. Sweeney, R.A. Feely, D.W. Chipman, B. Hales, G. Friedrich, F. Chavez, C. Sabine, A. Watson, D.C.E. Bakker, U. Schuster, N. Metzl, H. Yoshikawa-Inoue, M. Ishii, T. Midorikawa, Y. Nojiri, A. Kortzinger and T. Steinhoff, 2009. Climatological mean and decadal change in surface ocean $pCO_2$, and net sea-air $CO_2$ flux over the global oceans. Deep-Sea Res. II, 56: 554-577. https://doi.org/10.1016/j.dsr2.2008.12.009
  54. Walker, D.P., M.A. Brandon, A. Jenkins, J.T. Allen, J.A. Dowdeswell and J. Evans, 2007. Oceanic heat transport onto the Amundsen Sea shelf through a submarine glacial trough. Geophys. Res. Lett. 34: L02602, dol: 10.1029/2006GL028154.
  55. Yager, P.L., R.M. Sherrell, S.E. Stammerjohn, A.-J. Alderkamp, O. Schofield, E.P. Abrahamsen, K.R. Arrigo, S. Bertilsson, D.L. Garay, R. Guerrero, K.E. Lowry, P.P. Moksnes, K. Ndungu, A.F. Post, E. Randall-Goodwin, L. Riemann, S. Severmann, S. Thatje, G.L. van Dijken and S. Wilson, 2012. ASPIRE the Amundsen Sea Polynya International Research Expedition. Oceanography, 25(3): 40-53. https://doi.org/10.5670/oceanog.2012.73

Cited by

  1. 남극 아문젠해에서 해수 중 Mn의 분포 특성 vol.41, pp.2, 2014, https://doi.org/10.4217/opr.2019.41.2.063