DOI QR코드

DOI QR Code

Effect of Boswellia serrata Extracts on Degenerative Osteoarthritis in vitro and in vivo Models

보스웰리아 추출물의 골관절염 억제 효과 연구

  • Received : 2014.03.31
  • Accepted : 2014.04.02
  • Published : 2014.05.31

Abstract

The inhibitory effects of Boswellia serrata (BW) extracts on degenerative osteoarthritis were investigated in primary-cultured rat cartilage cells and a monosodium-iodoacetate (MIA)-induced osteoarthritis rat model. To identify the protective effects of BW extract against $H_2O_2$ ($800{\mu}M$, 2 hr) in vitro, cell survival was measured by MTT assay. Cell survival after $H_2O_2$ treatment was elevated by BW extract at a concentration of $20{\mu}g/mL$. In addition, BW extract treatment significantly reduced and normalized the productions of pro-inflammatory factors, nuclear transcription factor ${\kappa}B$, cyclooxygenase-2, tumor necrosis factor-${\alpha}$, and interleukin-6 at a concentration of $20{\mu}g/mL$. Treatment of chondrocytes with BW extract significantly reduced 5-lipoxygenase activity and production of prostaglandin E2, especially at a concentration of $10{\sim}20{\mu}g/mL$. For the in vivo animal study, osteoarthritis was induced by intra-articular injection of MIA into knee joints of rats. Consumption of a diet containing BW extract (100 and 200 mg/kg) for 35 days significantly inhibited the development and severity of osteoarthritis in rats. To determine the genetic expression of arthritic factors in articular cartilage, real-time PCR was applied to measure matrix metalloproteinases (MMP-3, MMP-9, and MMP-13), collagen type I, collagen type II, and aggrecan, and BW extract had protective effects at a concentration of 200 mg/kg. In conclusion, BW extract was able to inhibit articular cartilage degeneration by preventing extracellular matrix degradation and chondrocyte injury. One can consider that BW extract may be a potential therapeutic treatment for degenerative osteoarthritis.

본 실험에서는 primary culture된 연골세포 in vitro 실험모델과 MIA로 유발한 골관절염 in vivo 실험모델을 이용하여 보스웰리아 추출물의 골관절염 예방 효과를 확인하였다. 먼저 MTT 시험법을 통해 세포 사용 적정농도를 $20{\mu}g/mL$ 이하로 결정하여 연골세포 사멸 억제를 확인하고, 이를 근간으로 골관절염 동물실험 모델에서 골관절염 예방 효과를 확인하였다. $H_2O_2$ 처리에 따른 산화적 독성으로 연골세포 사멸을 유도한 실험에서 보스웰리아 추출물은 유의적으로 세포사멸을 억제하였으며 이러한 효과는 $5{\sim}20{\mu}g/mL$ 사이농도에서 비교적 높게 나타났다. 세포실험에서는 골관절염 발병에 따라 관절연골에 영향을 미치는 염증인자에 대한 기전연구를 진행하였으며, 연골세포에 LPS를 처리하여 염증을 유도한 후 보스웰리아 추출물의 효과를 확인한 실험 결과 면역과 염증반응을 조절하는 nuclear transcription factor ${\kappa}B(NF{\kappa}B)$, 염증관련 cytokine IL-6, TNF-${\alpha}$의 발현이 모두 보스웰리아 추출물 처리 시 유의적으로 감소하는 것으로 나타났으며 특히 $20{\mu}g/mL$ 농도에서 가장 효과가 뚜렷하고 일관되게 확인되었다. 또한 이들 cytokine에 의해 생성되는 COX-2 발현과 COX-2에 자극 받아 생성이 촉진되는 PGE2 생성을 확인한 결과 역시 $20{\mu}g/mL$ 농도에서 가장 효과적으로 생성이 억제되어 염증을 조절하는 것으로 나타났다. 특히 보스웰리아의 기능성분으로 알려진 보스웰릭산(boswellic acids)에 의해 억제되는 5-LO의 경우, 염증반응 유발의 핵심인자를 생성하는 효소로 알려져 있으며 이를 직접적으로 저해하는 것으로 알려진 보스웰리아의 효능을 확인 하고자 실험을 진행하였다. 실험 결과 염증을 유도한 연골세포에서 보스웰리아 추출물의 처리에 따라 5-LO 활성이 감소하였으며, 이는 곧 보스웰리아 추출물이 염증을 유발 핵심효소인 5-LO 활성을 효과적으로 억제함으로써 연골세포 보호 효과를 나타낸 것이다. 세포실험에서의 기전 결과를 바탕으로 골관절염을 유발한 동물모델에서의 보스웰리아 추출물의 섭취에 따른 효과가 나타날 것으로 기대되어 관절염 유발 동물모델에서 보스웰리아 추출물의 효능검증 실험을 진행하였으며, 세포실험 결과 및 기존의 연구내용을 참고하여 동물에서 보스웰리아의 섭취 농도를 50 mg/kg, 100 mg/kg 및 200 mg/kg으로 결정하고 AIN-93G diet에 보스웰리아 추출물 분말을 섞어 보스웰리아 diet를 제작하여 실험기간 동안 제공하였다. 골관절염 유발 동물모델을 만들기 위해 SD rat의 관절강에 MIA를 injection 하였으며, 보스웰리아 추출물 섭취에 따른 관절염 예방 효과를 관찰하기 위해 관절염 유발 2주일 전부터 제작된 식이를 제공하고 유발 후 3주간 지속적으로 식이 제공 및 관찰하였다. 연골의 주요 구성 성분인 collagen 및 aggrecan은 골관절염 발병 시 여러 인자에 의해 분해되는 것으로 알려져 있으며, 골관절염 유발동물모델에서 collagen type I, collagen type II 및 aggrecan 유전자 발현을 실시간 정량 PCR로 측정하여 변화를 살펴보았다. 그 결과 골관절염 유발 sham군에 비해 보스웰리아 추출물 섭취군에서 유의적으로 collagen type I, collagen type II 및 aggrecan 발현이 증가하였으며, 특히 BW200군에서 CLX 약물대조군과 비슷한 수준으로 발현이 증가하여 관절연골의 보호 효과가 가장 좋은 것으로 확인되었다. 교원질 합성을 억제하고 분해를 촉진시키는 MMPs(MMP-3, MMP-9, MMP-13)의 발현을 실시간 정량 PCR로 측정하여 발현 변화를 살펴보았다. 그 결과 앞선 다른 실험 결과와 마찬가지로 보스웰리아 섭취군에서 MMPs 유전자 발현이 유의적으로 낮아졌음을 살펴볼 수 있었다. 특히 BW200군에서 MMPs 발현이 유의적으로 감소하였으며, 관절염에 효과적으로 사용되는 약물인 CLX 투여 양성대조군과 비슷한 수치를 나타내었다. 이상의 결과를 통하여 보스웰리아 추출물은 골관절염에서 관절연골의 보호 효과가 있으며, 이는 골관절염 발생 시 나타나는 염증발현의 기전적인 측면뿐만 아니라 골관절염 유발 동물에서 섭취 효능까지 모두 일관되게 나타나 골관절염에서의 기능성 소재로써 개발가능성이 충분할 것으로 생각된다. 또한 추후 실험을 통해 골관절염이 유발된 동물에서 보스웰리아 추출물 섭취 시 관절연골의 형태학적인 변화 및 골상태의 분석과 더불어 관절염 유발 동물의 관절연골 및 혈액학적 분석을 진행하여 동물에서 기전적 측면을 보완하고 보스웰리아 추출물 효능에 대한 추가적인 검증을 하고자 한다.

Keywords

References

  1. MOHW. 2012. Korea Health Statistics 2012: Korea National Health and Nutrition Examination Survey (KNHANES V-3). Ministry of Health and Welfare, Sejong, Korea. p 67, 678.
  2. Garner BC, Stoker AM, Kuroki K, Evans R, Cook CR, Cook JL. 2011. Using animal models in osteoarthritis biomarker research. J Knee Surg 24: 251-264. https://doi.org/10.1055/s-0031-1297361
  3. Wu W, Xu X, Dai Y, Xia L. 2010. Therapeutic effect of the saponin fraction from Clematis chinensis Osbeck roots on osteoarthritis induced by monosodium iodoacetate through protecting articular cartilage. Phytother Res 24: 538-546.
  4. Wesche-Soldato DE, Swan RZ, Chung CS, Ayala A. 2007. The apoptotic pathway as a therapeutic target in sepsis. Curr Drug Targets 8: 493-500. https://doi.org/10.2174/138945007780362764
  5. Herrington C, Hall PA. 2008. Molecular and cellular themes in inflammation and immunology. J Pathol 214: 123-125. https://doi.org/10.1002/path.2303
  6. Campo GM, Avenoso A, Campo S, D'Ascola A, Traina P, Sama D, Calatroni A. 2009. Glycosaminoglycans modulate inflammation and apoptosis in LPS-treated chondrocytes. J Cell Biochem 106: 83-92. https://doi.org/10.1002/jcb.21981
  7. Ammon HRT. 2010. Modulation of the immune system by Boswellia serrata extracts and boswellic acids. Phytomedicine 17: 862-867. https://doi.org/10.1016/j.phymed.2010.03.003
  8. Roy S, Khanna S, Krishnaraju AV, Subbaraju GV, Yasmin T, Bagchi D, Sen CK. 2006. Regulation of vascular responses to inflammation: inducible matrix metalloproteinase-3 expression in human microvascular endothelial cells is sensitive to antiinflammatory Boswellia. Antioxid Redox Sign 8: 653-660. https://doi.org/10.1089/ars.2006.8.653
  9. Park B, Prasad S, Yadav V, Sung B, Aggarwal BB. 2011. Boswellic acid suppresses growth and metastasis of human pancreatic tumors in an orthotopic nude mouse model through modulation of multiple targets. PLoS One 6: e26943. https://doi.org/10.1371/journal.pone.0026943
  10. Sengupta K, Kolla JN, Krishnaraju AV, Yalamanchili N, Rao CV, Golakoti T, Raychaudhuri S, Raychaudhuri SP. 2011. Cellular and molecular mechanisms of anti-inflammatory effect of Aflapin: a novel Boswellia serrata extract. Mol Cell Biochem 354: 189-197. https://doi.org/10.1007/s11010-011-0818-1
  11. KHIDI. 2011. Health functional food industry development assistance report. Korea Health Industry Development Institute, Chungbuk, Korea. p 8.
  12. Lee JW, Do JH. 2005. Market trend of health functional food and the prospect of ginseng market. J Ginseng Res 29: 206-214. https://doi.org/10.5142/JGR.2005.29.4.206
  13. Kim HK. 2004. Current status and prospect of nutraceuticals. Food Industry and Nutrition 9(1): 1-14.
  14. Sailer ER, Subramanian LR, Rall B, Hoernlein RF, Ammon HP, Safayhi H. 1996. Acetyl-11-keto-beta-boswellic acid (AKBA): structure requirements for binding and 5-lipoxygenase inhibitory activity. Br J Pharmacol 117: 615-618. https://doi.org/10.1111/j.1476-5381.1996.tb15235.x
  15. Siddiqui MZ. 2011. Boswellia serrata, a potential antiinflammatory agent: an overview. Indian J Pharm Sci 73: 255-261.
  16. Ammon HP. 2006. Boswellic acids in chronic inflammatory diseases. Planta Med 72: 1100-1116. https://doi.org/10.1055/s-2006-947227
  17. Khayyal MT, El-Ghazaly MA, El-Hazek RM, Nada AS. 2009. The effects of celecoxib, a COX-2 selective inhibitor, on acute inflammation induced in irradiated rats. Inflammopharmacology 17: 255-266. https://doi.org/10.1007/s10787-009-0014-z
  18. El-Ghazaly MA, Nada AS, El-Hazek RM, Khayyal MT. 2010. Effect of selective COX-2 inhibitor, celecoxib on adjuvant-induced arthritis model in irradiated rats. Int J Radiat Biol 86: 1079-1087. https://doi.org/10.3109/09553002.2010.501839
  19. Mathy-Hartert M, Martin G, Devel P, Deby-Dupont G, Pujol JP, Reginster JY, Henrotin Y. 2003. Reactive oxygen species downregulate the expression of pro-inflammatory genes by human chondrocytes. Inflamm Res 52: 111-118. https://doi.org/10.1007/s000110300023
  20. Asada S, Fukuda K, Oh M, Hamanishi C, Tanaka S. 1999. Effect of hydrogen peroxide on the metabolism of articular chondrocytes. Inflamm Res 48: 399-403. https://doi.org/10.1007/s000110050478
  21. Khan IM, Gilbert SJ, Caterson B, Sandell LJ, Archer CW. 2008. Oxidative stress induces expression of osteoarthritis markers procollagen IIA and 3B3(-) in adult bovine articular cartilage. Osteoarthritis Cartilage 16: 698-707. https://doi.org/10.1016/j.joca.2007.10.004
  22. Gilmore TD. 1999. The Rel/NF-kB signal transduction pathway: introducion. Oncogene 18: 6842-6844. https://doi.org/10.1038/sj.onc.1203237
  23. Kim CS, Kawada T, Kim BS, Han IS, Choe SY, Kurata T, Yu R. 2003. Capsaicin exhibits anti-inflammatory property by inhibiting IkB-a degradation in LPS-stimulated peritoneal macrophages. Cell Signal 15: 299-306. https://doi.org/10.1016/S0898-6568(02)00086-4
  24. Jotanovic Z, Mihelic R, Sestan B, Dembic Z. 2012. Role of interleukin-1 inhibitors in osteoarthritis: an evidence-based review. Drugs Aging 29: 343-358. https://doi.org/10.2165/11599350-000000000-00000
  25. Bauge C, Girard N, Leclercq S, Galera P, Boumediene K. 2012. Regulatory mechanism of transforming growth factor beta receptor type II degradation by interleukin-1 in primary chondrocytes. Biochim Biophys Acta-Mol Cell Res 1823: 983-986. https://doi.org/10.1016/j.bbamcr.2012.02.017
  26. Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H. 2011. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol 7: 33-42. https://doi.org/10.1038/nrrheum.2010.196
  27. Ghosh J, Myers CE. 1997. Arachidonic acid stimulates prostate cancer cell growth: critical role of 5-lipoxygenase. Biochem Biophys Res Commun 235: 418-423. https://doi.org/10.1006/bbrc.1997.6799
  28. Sailer ER, Schweizer S, Boden SE, Ammon HP, Safayhi H. 1998. Characterization of an acetyl-11-keto-beta-boswellic acid and arachidonate-binding regulatory site of 5-lipoxygenase using photoaffinity labeling. Eur J Biochem 256: 364-368. https://doi.org/10.1046/j.1432-1327.1998.2560364.x
  29. Dixon DA, Kaplan CD, McIntyre TM, Zimmerman GA, Prescott SM. 2000. Post-transcriptional control of cyclooxygenase-2 gene expression. The role of the 3'-untranslated region. J Biol Chem 275: 11750-11757. https://doi.org/10.1074/jbc.275.16.11750
  30. Newton R, Kuitert LM, Bergmann M, Adcock IM, Barnes PJ. 1997. Evidence for involvement of NF-${\kappa}$B in the transcriptional control of COX-2 gene expression by IL-1${\beta}$. Biochem Biophys Res Commun 237: 28-32. https://doi.org/10.1006/bbrc.1997.7064
  31. Vane JR, Bakhle YS, Botting RM. 1998. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol 38: 97-120. https://doi.org/10.1146/annurev.pharmtox.38.1.97
  32. Bensen WG, Fiechtner JJ, McMillen JI, Zhao WW, Yu SS, Woods EM, Hubbard RC, Isakson PC, Verburg KM, Geis GS. 1999. Treatment of osteoarthritis with celecoxib, a cyclooxygenase-2 inhibitor: a randomized controlled trial. Mayo Clin Proc 74: 1095-1105. https://doi.org/10.4065/74.11.1095
  33. Hardy MM, Seibert K, Manning PT, Currie MG, Woerner BM, Edwards D, Koki A, Tripp CS. 2002. Cyclooxygenase 2-dependent prostaglandin E2 modulates cartilage proteoglycan degradation in human osteoarthritis explants. Arthritis Rheum 46: 1789-1803. https://doi.org/10.1002/art.10356
  34. Lee V, Cao L, Zhang Y, Kiani C, Adams ME, Yang BB. 2000. The roles of matrix molecules in mediating chondrocyte aggregation, attachment, and spreading. J Cell Biochem 79: 322-333. https://doi.org/10.1002/1097-4644(20001101)79:2<322::AID-JCB150>3.0.CO;2-U
  35. Abaskharoun M, Bellemare M, Lau E, Margolis RU. 2010. Expression of hyaluronan and the hyaluronan-binding proteoglycans neurocan, aggrecan, and versican by neural stem cells and neural cells derived from embryonic stem cells. Brain Res 1327: 6-15. https://doi.org/10.1016/j.brainres.2010.02.048
  36. Patwari P, Cook MN, DiMicco MA, Blake SM, James IE, Kumar S, Cole AA, Lark MW, Grodzinsky AJ. 2003. Proteoglycan degradation after injurious compression of bovine and human articular cartilage in vitro: interaction with exogenous cytokines. Arthritis Rheum 48: 1292-1301. https://doi.org/10.1002/art.10892
  37. Lee JH, Fitzgerald JB, Dimicco MA, Grodzinsky AJ. 2005. Mechanical injury of cartilage explants causes specific time-dependent changes in chondrocyte gene expression. Arthritis Rheum 52: 2386-2395. https://doi.org/10.1002/art.21215
  38. Moldovan F, Pelletier JP, Hambor J, Cloutier JM, Martel-Pelletier J. 1997. Collagenase-3 (matrix metalloprotease 13) is preferentially localized in the deep layer of human arthritic cartilage in situ: in vitro mimicking effect by transforming growth factor beta. Arthritis Rheum 40: 1653-1661. https://doi.org/10.1002/art.1780400915

Cited by

  1. Effect ofHijikia fusiformeextracts on degenerative osteoarthritisin vitroandin vivomodels vol.10, pp.3, 2016, https://doi.org/10.4162/nrp.2016.10.3.265
  2. Effect of Mulberry Extract Complex on Degenerative Arthritis In Vivo Models vol.45, pp.5, 2016, https://doi.org/10.3746/jkfn.2016.45.5.634
  3. Selection of the optimal herbal composition of pomegranate concentrated powder from aqueous extracts of and to treat osteoarthritis in rats vol.38, pp.4, 2017, https://doi.org/10.13048/jkm.17037
  4. Anti-osteoarthritic effects of a combination of pomegranate concentrate powder, Eucommiae cortex and Achyranthis radix in rats vol.39, pp.4, 2018, https://doi.org/10.13048/jkm.18037
  5. Anti-osteoarthritis effects of Pomegranate, Eucommiae cortex and Achyranthis radix extracts on the primary cultured rat articular chondrocytes vol.21, pp.3, 2017, https://doi.org/10.25153/spkom.2017.21.3.009
  6. Concentration-dependent in vitro Anti-osteoarthritis Effects of Mixed Formula - Pomegranate Concentrate Powder: Eucommiae Cortex: Achyranthis Radix 5:4:1 (g/g) on the Primary Cultured Rat Articular Ch vol.33, pp.2, 2014, https://doi.org/10.15188/kjopp.2019.04.33.2.131
  7. Effects of Pomegranate Concentrate Powder: Eucommiae Cortex: Achyranthis Radix 5:4:1 (w/w) Mixed Formula on Monosodium Iodoacetate-Induced Osteoarthritis in Rats vol.15, pp.3, 2014, https://doi.org/10.1177/1934578x20907725
  8. Anti-Osteoarthritic Effects of a Mixture of Dried Pomegranate Concentrate Powder, Eucommiae Cortex, and Achyranthis Radix 5:4:1 ( g / g ) in a Surgically Induced Osteoarthritic Rabbit Model vol.12, pp.3, 2014, https://doi.org/10.3390/nu12030852
  9. Plebeian Sage (Salvia plebeia R. Br) Extract Ameliorates Inflammation and Cartilage Degradation in Surgically Induced Osteoarthritis Rats vol.12, pp.4, 2014, https://doi.org/10.3390/app12042030