DOI QR코드

DOI QR Code

The Research Progress of the Interactions between miRNA and Wnt/beta-catenin Signaling Pathway in Breast Cancer of Human and Mice

  • Ye, Ni (Animal Biotechnology Center, Sichuan Agricultural University) ;
  • Wang, Bin (Animal Biotechnology Center, Sichuan Agricultural University) ;
  • Quan, Zi-Fang (Animal Biotechnology Center, Sichuan Agricultural University) ;
  • Pan, Hai-Bo (Animal Biotechnology Center, Sichuan Agricultural University) ;
  • Zhang, Man-Li (Animal Biotechnology Center, Sichuan Agricultural University) ;
  • Yan, Qi-Gui (Animal Biotechnology Center, Sichuan Agricultural University)
  • Published : 2014.02.01

Abstract

MicroRNA expression is a research focus in studies of tumors. This article concentrates attention on potential links between tumors caused by mouse mammary tumor virus (MMTV) and human breast cancer, in order to provide theoretical basis for using mouse model to search for miRNA effects mediated by Wnt/beta-catenin signaling in human breast cancer. By analyzing interactions between miRNAs and the Wnt/beta-catenin signaling pathway in breast cancer, we hope to casts light on more biological functions of miRNAs in the process of tumor formation and growth and to explore their potential value in cancer diagnosis, prognosis and treatment. Our endeavor aimed at providing theoretical basis for finding safer, more effective methods for treatment of human breast cancer at the miRNA molecular level.

Keywords

References

  1. Asaga S, Kuo C, Nguyen T, et al (2011). Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin Chem, 57, 84-91. https://doi.org/10.1373/clinchem.2010.151845
  2. Asangani IA, Rasheed SA, Nikolova DA, et al (2008). MicroRNA-21 (miR-21) post-transcriptionally down-regulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 27, 2128-36. https://doi.org/10.1038/sj.onc.1210856
  3. Burk U, Schubert J, Wellner U, et al (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasions in cancer cells. EMBO Rep, 9, 582-9. https://doi.org/10.1038/embor.2008.74
  4. Cai WY, Wei TZ, Wu QC, et al (2013). Wnt/${\beta}$-catenin pathway represses let-7 microRNAs expression via transactivation of Lin28 to augment breast cancer stem cell expansion. J Cell Sci, 126, 2877-89. https://doi.org/10.1242/jcs.123810
  5. Cai JC, Guan HY, Fang LS, et al (2013). MicroRNA-374a activates Wnt/${\beta}$-catenin signaling to promote breast cancer metastasis. J Clin Invest, 123, 566-76.
  6. Chen J, Wang L, Matyunina LV, et al (2011). Overexpression of miR-429 induces mesenchymal-to-epithelial transition (MET) in metastatic ovarian cancer cells. Gynecol. Oncol, 121, 200-5. https://doi.org/10.1016/j.ygyno.2010.12.339
  7. Frankel LB, Christoffersen NR, Jacobsen A, et al (2008). Programmed cell death 4 (PDCD) is an important functional target of the microRNA miR-21 in breast cancer cells. Biol Chem, 283, 1026-33. https://doi.org/10.1074/jbc.M707224200
  8. Gregory PA, Bert AG, Paterson EL, et al (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol, 10, 593-601. https://doi.org/10.1038/ncb1722
  9. Hashimi ST, Fulcher JA, Chang MH, et al (2009). MicroRNA profiling identifies miR-34a and miR-21 and their target genes JAG1 and WNT1 in the coordinate regulation of dendritic cell differentiation. Blood, 114, 404-14. https://doi.org/10.1182/blood-2008-09-179150
  10. Hatzis P, van der Flier LG, van Driel MA, et al (2008). Genome-Wide Pattern of TCF7L2/TCF4 Chromatin Occupancy in Colorectal Cancer Cells. Mol Cell Biol, 28, 2732-44. https://doi.org/10.1128/MCB.02175-07
  11. Heo I, Joo C, Cho J, et al (2008). Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell, 32, 276-84. https://doi.org/10.1016/j.molcel.2008.09.014
  12. Huang GL, Guo GL, Zhang XH (2008). The research progress of miRNAs in breast cancer. Chinese Journal of breast diseases (electronic version), 2, 301-7.
  13. Huang K, Zhang JX, Han L, et al (2010). MicroRNA roles in beta-catenin pathway. Mol Cancer, 9, 252. https://doi.org/10.1186/1476-4598-9-252
  14. Hutvagner G, Zamore PD (2002). A microRNA in a multiple-turnover RNAi enzyme complex. Science, 297, 2056-60. https://doi.org/10.1126/science.1073827
  15. Indik S, Guzburg WH, Salmons B, et al (2005). Mouse mammary tumor virus infects human cells. Cancer Res, 65, 6651-9. https://doi.org/10.1158/0008-5472.CAN-04-2609
  16. Kong D, Li Y, Wang Z, et al (2009). miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells, 27, 1712-21. https://doi.org/10.1002/stem.101
  17. Korpal M, Lee ES, Hu G, et al (2008). The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem, 283, 14910-4. https://doi.org/10.1074/jbc.C800074200
  18. Kruger JA, Kaplan CD, Luo Y, et al (2006). Characterization of stem cell-like cancer cells in immune-competent mice. Blood, 108, 3906-12. https://doi.org/10.1182/blood-2006-05-024687
  19. Ladeiro, Y, Couchy, G, Balabaud, C, et al (2008). MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology, 47, 1955-63. https://doi.org/10.1002/hep.22256
  20. Lai EC (2002). MicroRNAs are complementary to 3'UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet, 30, 363-4. https://doi.org/10.1038/ng865
  21. Lee RC, Feinbaum RL, Ambros V, et al (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843-54. https://doi.org/10.1016/0092-8674(93)90529-Y
  22. Liu B, Wang Y, Melana SM, et al (2001). Identification of a proviral structure n human breast cancer. Clinic Cancer Res, 61, 1754-9.
  23. Luo T, Wu XT, Zhang MM, et al (2006). Study of mouse mammary tumor virus-like gene sequences expressing in breast tumors of Chinese women. J Sichuan University (Medical Science Edition), 37, 844-6.
  24. Martello G, Zacchigna L, Inui M, et al (2007). MicroRNA control of Nodal signaling. Nature, 449, 183-8. https://doi.org/10.1038/nature06100
  25. Melana SM, Holland JF, Pogo BGT, (2001). Search for Mouse Mammary Tumor Virus-like env Sequences in Cancer and Normal Breast from the Same Individuals. Clinic Cancer Res, 7, 283-4.
  26. Mok MT, Lawson JS, Iacopetta BJ, et al (2008). Mouse mammary tumor virus-like env sequences in human breast cancer. Int J Cancer, 122, 2864-70. https://doi.org/10.1002/ijc.23372
  27. Newman MA, Thomson JM, Hammond SM, et al (2008). Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA, 14, 1539-49. https://doi.org/10.1261/rna.1155108
  28. Ono M, Yasunaga T, Miyata T, et al (1986). Nucleotide sequence of human endogenous retrovirus genome related to the mouse mammary tumor virus genome. Virol, 60, 589-98
  29. Park SM, Gaur AB, Lengyel E, et al (2008). The miR-200 family determies the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev, 22, 894-907. https://doi.org/10.1101/gad.1640608
  30. Parkin NT, Kitajewski J, Varmus HE, et al (1993). Activity of Wnt-1 as a transmembrane protein. Genes Dev, 7, 2181-93. https://doi.org/10.1101/gad.7.11.2181
  31. Pasquinelli AE, Reinhart BJ, Slack F, et al (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 408, 86-9. https://doi.org/10.1038/35040556
  32. Patrawala L, Calhoun T, Schneider-Broussard R, et al (2005). Side Population Is Enriched in Tumorigenic, Stem-Like Cancer Cells, whereas ABCG2+ and ABCG2-Cancer Cells Are Similarly Tumorigenic. Cancer Res, 65, 6207-19. https://doi.org/10.1158/0008-5472.CAN-05-0592
  33. Piskounova E, Viswanathan SR, Janas M, et al (2008). Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28. J Biol Chem, 283, 21310-4. https://doi.org/10.1074/jbc.C800108200
  34. Reddy SD, Ohshiro K, Rayala SK, et al (2008). MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Res, 68, 8195-200. https://doi.org/10.1158/0008-5472.CAN-08-2103
  35. Reinhart BJ, Slack FJ, Basson M, et al (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403, 901-6. https://doi.org/10.1038/35002607
  36. Rybak A, Fuchs H, Smirnova L, et al (2008). A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol, 10, 987-93. https://doi.org/10.1038/ncb1759
  37. Si ML, Zhu S, Wu H, et al (2007). miR-21-mediated tumor growth. Oncogene, 26, 2799-803. https://doi.org/10.1038/sj.onc.1210083
  38. Stingl J, Eirew P, Ricketson I, et al (2006). Purification and unique properties of mammary epithelial stem cells. Nature, 439, 993-7.
  39. Tepera SB, McCrea PD, Rosen JM, (2003). A ${\beta}$-catenin survival signal is required for normal lobular development in the mammary gland. Cell Sci, 116, 1137-49. https://doi.org/10.1242/jcs.00334
  40. Theodorou V, Kimm MA, Boer M, et al (2007). MMTV insertional mutagenesis identifies genes, gene families and pathways involved in mammary cancer. Nat Genet, 39, 759-69. https://doi.org/10.1038/ng2034
  41. Tryndyak VP, Beland FA, Pogribny IP (2010). E-cadherin transcriptional downregulation by epigenetic and microRNA-200 family alterations is related to mesenchymal and drug-resistant phenotypes in human breast cancer cells. Int J Cancer, 126, 2575-83.
  42. Tsukamoto AS, Grosschedl R, Guzman RC, et al (1988). Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell, 55, 619-25. https://doi.org/10.1016/0092-8674(88)90220-6
  43. Volinia S, Calin GA, Liu C G, et al (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA, 103, 2257-61. https://doi.org/10.1073/pnas.0510565103
  44. Wang Y, Holland JF, Bleiweiss IJ, et al (1995). Detection of mammary tumor virus env gene-like sequences in human breast cancer. Cancer Res, 55, 5173-9.
  45. Wang Y, PelissOn I, Melana SM, et al (2001). MMTV-like env gene seguences in human breast cancer. Arch Virol, 146, 171-80. https://doi.org/10.1007/s007050170201
  46. Yan LX, Huang XF, Shao Q, et al (2008). MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 14, 2348-60. https://doi.org/10.1261/rna.1034808
  47. Yu F, Yao H, Zhu P, et al (2007). let-7 regulates self-renewal and tumorigenicity of breast cancer cells. Cell, 131, 1109-23. https://doi.org/10.1016/j.cell.2007.10.054
  48. Zapata-Benavides P, Saavedra-Alonso S, Zamora-Avila D, et a1 (2007). Mouse mammary tumor virus-like gene sequences in breast cancer samples of Mexican women. Intervirology, 50, 402-7. https://doi.org/10.1159/000110652
  49. Zeng Y, Yi R, Cullen BR, (2003). MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA, 100, 9779-84. https://doi.org/10.1073/pnas.1630797100
  50. Zhu S, Si ML, Wu H, et a1 (2007). MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPMl). Biol Chem, 282, 14328-36. https://doi.org/10.1074/jbc.M611393200

Cited by

  1. Prognostic Value of β-catenin Expression in Breast Cancer Patients: a Meta-analysis vol.16, pp.14, 2015, https://doi.org/10.7314/APJCP.2015.16.14.5625
  2. Short hairpin RNA silencing of TGF-βRII and FZD-7 synergistically suppresses proliferation and metastasis of hepatocellular carcinoma cells vol.11, pp.3, 2016, https://doi.org/10.3892/ol.2016.4208