DOI QR코드

DOI QR Code

Performance Evaluation of Seismic Vibration Control of Asymmetrical Cable-Stayed Bridge Using MR Damper

MR 댐퍼를 이용한 비대칭 사장교의 지진 진동제어 성능평가

  • Received : 2013.10.16
  • Accepted : 2014.03.30
  • Published : 2014.06.01

Abstract

A study has been carried out that effectively controls the vibration of asymmetric cable-stayed bridges caused by earthquakes with MR dampers. In order to enhance the practical serviceability of MR dampers, an asymmetric cable-stayed bridge structure has been designed and produced, and a MR damper has been produced so as to have this bridge structure controlled appropriately. An experiment that controls vertical and horizontal vibrations has been carried out by exciting the asymmetric cable-stayed bridge in the horizontal direction with the El-centro seismic wave. The control performance of the MR damper has been evaluated under the five control conditions in the experiments of vibration control in each direction. As a result of the experiment, MR dampers were proved to control vibrations more effectively when either Lyapunov control algorithm or Clipped-optimal control algorithm was used to control vibrations of the asymmetric cable-stayed bridge caused by earthquakes. In addition, different controlling effects were found in vibration controls in vertical and horizontal directions due to the asymmetry of the structure and the horizontal excitation. With such controlling effects, semi-active MR dampers are evaluated to effectively control vibrations caused by earthquakes in flexible and asymmetric structures such as asymmetric cable-stayed bridges.

비대칭 사장교에 지진으로 인한 진동을 MR(Magneto-rheological) 댐퍼를 이용하여 효과적으로 제어하는 연구를 수행하였다. MR 댐퍼의 실용적인 사용성을 높이기 위하여 비대칭 사장교 구조물을 설계/제작하고, 이 교량구조물을 적정하게 제어할 수 있도록 MR 댐퍼를 제작하였다. El-centro 지진파로 비대칭 사장교를 수평방향으로 가진하여 수직방향과 수평방향의 진동을 제어하는 실험을 하였다. 각 방향의 진동제어 실험에 5가지의 제어 조건으로 MR 댐퍼의 제어성능을 평가 하였다. 실험결과 MR 댐퍼는 지진진동으로 인한 비대징사장교를 진동제어 하기 위하여 Lyapunov Control 알고리즘과 Clipped-optimal control 알고리즘을 이용하여 제어를 할 경우, 보다 효과적으로 진동을 제어하는 것을 알 수 있었다. 그리고 구조물의 비대칭성과 수평 가진으로 인하여 수직 및 수평 방향의 진동제어가 서로 다른 제어효과를 보였다. 이와 같은 제어효과는 비대칭 사장교와 같은 유연하며 비대칭인 구조물에 준능동의 MR 댐퍼가 효과적으로 지진진동을 제어하는 것으로 평가되었다.

Keywords

References

  1. Carlson, J. D. and Spencer, Jr. B. F. (1996). "Magneto-rheological fluid dampers for semi-active seismic control." Proc, 3rd International Conference on Motion and Vibration Control, Chiba, Japan, Vol. 3, pp. 35-40.
  2. Dyke, S, J., Caicedo, J. M., Turan, G., Bergman, L. A. and Hague, S. (2003). "Phase I benchmark control problem for seismic response of cable-stayed bridges." Journal of Structural Engineering, Vol. 129, No. 7, pp. 857-872. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(857)
  3. Dyke, S. J., Spencer Jr, B. F., Sain, M. K. and Carlson, J. D. (1998). "An experimental study of MR dampers for seismic protection." Smart Materials and Structures: Special Issue on Large Civil Structures 7, pp. 693-703.
  4. Dyke, S. J., Spencer, Jr. B. F., Sain, M. K. and Carlson, J. D. (1996). "Experimental verification of semi-active structural control strategies using acceleration feedback." Proc. of 3rd International Conference on Motion and Vibration Control, Chiba, Japan, Vol. 3, pp. 291-296.
  5. Heo, G. and Kim, C. (2012). "Designing a unified wireless system for vibration control." Soil Dynamics and Earthquake Engineering, Vol. 38, pp. 72-80. https://doi.org/10.1016/j.soildyn.2012.01.012
  6. Heo, G. H. and Jeon, J. R. (2011). "Performance estimation of semi-active real-time feedback vibration control system." Journal of the Korea Institute for Structural Maintenance Inspection, Vol. 15, No. 1, pp. 85-94 (in Korean).
  7. Heo, G. H., Jeon, J. R., Park, S. B. and Oh, S. K. (2010). "Real-time vibration control of bridges by MR damper and lyapunov control algorithm." Journal of the Korea Institute for Structural Maintenance Inspection, Vol. 14, No. 4, pp. 55-61 (in Korean).
  8. Jolly, M. R., Bender, J. W. and Carlson, J. D. (1999). "Properties and applications of commercial magnetorheological fluid." Journal of Intelligent Material Systems and Structures, Vol. 10, No. 1, pp. 262-275.
  9. Kobori, T. (1996). "Future direction on research and development of seismic response controlled structure." Computer-Aided Civil and Infrastructure Engineering, Vol. 11, No. 5, pp. 297-324. https://doi.org/10.1111/j.1467-8667.1996.tb00444.x
  10. Sodeyama, H., Sunakoda, K., Fujitani, H., Sode, H. and Iwata, N. (2003). "Dynamic test and simulation of magneto-rheological damper." Computer-Aided Civil and Infrastructure Engineering, 18, pp. 45-57. https://doi.org/10.1111/1467-8667.t01-1-00298
  11. Sodeyama, H., Suzuki, K. and Sunakoda, K. (2004). "Development of large capacity semi-active seismic damper using magnetorheological fluid." Journal of Vessel Technology, ASME, 126, pp. 105-109. https://doi.org/10.1115/1.1634587
  12. Soong, T. T. (1990). Active structural control theory and practice, Longman Science & Technical.
  13. Spencer, Jr. B. F., Dyke, S. J., Sain, M. K. and Carlson, J. D. (1997). "Phenomenological model of a magnetorheological damper." Journal of Engineering Mechanics, ASCE, Vol. 123, No. 3, pp. 230-238. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230)