DOI QR코드

DOI QR Code

Morphological optimization of process parameters of randomly oriented carbon/carbon composite

  • Raunija, Thakur Sudesh Kumar (Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Indian, Space Research Organisation) ;
  • Manwatkar, Sushant Krunal (Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Indian, Space Research Organisation) ;
  • Sharma, Sharad Chandra (Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Indian, Space Research Organisation) ;
  • Verma, Anil (Department of Chemical Engineering, Indian Institute of Technology)
  • Received : 2013.11.19
  • Accepted : 2013.12.30
  • Published : 2014.01.31

Abstract

A microstructure analysis is carried out to optimize the process parameters of a randomly oriented discrete length hybrid carbon fiber reinforced carbon matrix composite. The composite is fabricated by moulding of a slurry into a preform, followed by hot-pressing and carbonization. Heating rates of 0.1, 0.2, 0.3, 0.5, 1, and $3.3^{\circ}C/min$ and pressures of 5, 10, 15, and 20 MPa are applied during hot-pressing. Matrix precursor to reinforcement weight ratios of 70:30, 50:50, and 30:70 are also considered. A microstructure analysis of the carbon/carbon compacts is performed for each variant. Higher heating rates give bloated compacts whereas low heating rates give bloating-free, fine microstructure compacts. The compacts fabricated at higher pressure have displayed side oozing of molten pitch and discrete length carbon fibers. The microstructure of the compacts fabricated at low pressure shows a lack of densification. The compacts with low matrix precursor to reinforcement weight ratios have insufficient bonding agent to bind the reinforcement whereas the higher matrix precursor to reinforcement weight ratio results in a plaster-like structure. Based on the microstructure analysis, a heating rate of $0.2^{\circ}C/min$, pressure of 15 MPa, and a matrix precursor to reinforcement ratio of 50:50 are found to be optimum w.r.t attaining bloating-free densification and processing time.

Keywords

References

  1. Xiong X, Huang BY, Li JH, Xu HJ. Friction behaviors of carbon/carbon composites with different pyrolytic carbon textures. Carbon, 44, 463 (2006). http://dx.doi.org/10.1016/j.carbon.2005.08.022.
  2. Wang Q, Han XH, Sommers A, Park Y, T' Joen C, Jacobi A. A review on application of carbonaceous materials and carbon matrix composites for heat exchangers and heat sinks. Int J Refrig, 35, 7 (2012). http://dx.doi.org/10.1016/j.ijrefrig.2011.09.001.
  3. Gandikota V, Jones GF, Fleischer AS. Thermal performance of a carbon fiber composite material heat sink in an FC-72 thermosyphon. Exp Therm Fluid Sci, 34, 554 (2010). http://dx.doi.org/10.1016/j.expthermflusci.2009.11.008.
  4. Luo R. Friction performance of C/C composites prepared using rapid directional diffused chemical vapor infiltration processes. Carbon, 40, 1279 (2002). http://dx.doi.org/10.1016/S0008-6223(01)00283-4.
  5. Kasem H, Bonnamy S, Berthier Y, Dufrenoy P, Jacquemard P. Tribological, physicochemical and thermal study of the abrupt friction transition during carbon/carbon composite friction. Wear, 267, 846 (2009). http://dx.doi.org/10.1016/j.wear.2008.12.076.
  6. Raunija TSK, Babu S, Wesley CS. A process of producing carbon/carbon composite. Indian Patent, Application No. 1713/CHE/2012 (2012).
  7. Barabash V, Akiba M, Bonal JP, Federici G, Matera R, Nakamura K, Pacher HD, Rodig M, Vieider G, Wu CH. Carbon fiber composites application in ITER plasma facing components. J Nucl Mater, 258-263, 149 (1998). http://dx.doi.org/10.1016/S0022-3115(98)00267-0.
  8. Ozturk A, Moore RE. Tensile fatigue behaviour of tightly woven carbon/carbon composites. Composites, 23, 39 (1992). http://dx.doi.org/10.1016/0010-4361(92)90284-2.
  9. Li C, Crosky A. The effect of carbon fabric treatment on delamination of 2D-C/C composites. Composites Sci Technol, 66, 2633 (2006). http://dx.doi.org/10.1016/j.compscitech.2006.03.025.
  10. Lucchesi AJ, Hay JC, White KW. Characterization of wakezone tractions in an oxidation-inhibited carbon/carbon composite. Composites Sci Technol, 49, 315 (1993). http://dx.doi.org/10.1016/0266-3538(93)90062-L.
  11. Ko TH, Kuo WS, Chang YH. Influence of carbon-fiber felts on the development of carbon-carbon composites. Composites A, 34, 393 (2003). http://dx.doi.org/10.1016/S1359-835X(03)00053-8.
  12. Tzeng SS, Lin WC. Mechanical behavior of two-dimensional carbon/carbon composites with interfacial carbon layers. Carbon, 37, 2011 (1999). http://dx.doi.org/10.1016/S0008-6223(99)00074-3.
  13. Appleyard SP, Rand B. The effect of fibre-matrix interactions on structure and property changes during the fabrication of unidirectional carbon/carbon composites. Carbon, 40, 817 (2002). http://dx.doi.org/10.1016/S0008-6223(01)00204-4.
  14. Rao MV, Mahajan P, Mittal RK. Effect of architecture on mechanical properties of carbon/carbon composites. Compos Struct, 83, 131 (2008). http://dx.doi.org/10.1016/j.compstruct.2007.04.003.
  15. Shin HK, Lee HB, Kim KS. Tribological properties of pitch-based 2-D carbon-carbon composites. Carbon, 39, 959 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00158-5.
  16. Luo R, Huai X, Qu J, Ding H, Xu S. Effect of heat treatment on the tribological behavior of 2D carbon/carbon composites. Carbon, 41, 2693 (2003). http://dx.doi.org/10.1016/S0008-6223(03)00291-4.
  17. Raunija TSK, Babu S. Randomly oriented carbon/carbon composite. AIP Conf Proc, 1538, 168 (2013). http://dx.doi.org/10.1063/1.4810050.
  18. Savage G. Carbon/Carbon Composites, Chapman & Hall, New York, NY, 176 (1993).

Cited by

  1. Method and mechanism of dispersing agent free dispersion of short carbon fibers in silicon carbide powder vol.15, pp.3, 2014, https://doi.org/10.5714/CL.2014.15.3.180
  2. Low Cost and Rapidly Processed Randomly Oriented Carbon/Carbon Composite Bipolar Plate for PEM Fuel Cell vol.16, pp.6, 2016, https://doi.org/10.1002/fuce.201600079
  3. Yield enhancement of matrix precursor in short carbon fiber reinforced randomly oriented carbon/carbon composite vol.19, 2016, https://doi.org/10.5714/CL.2016.19.057
  4. Effects of coal tar pitch addition on the wear behavior of carbon/carbon composites vol.20, 2016, https://doi.org/10.5714/CL.2016.20.062