DOI QR코드

DOI QR Code

Mechanical and thermal properties of MWCNT-reinforced epoxy nanocomposites by vacuum assisted resin transfer molding

  • Lee, Si-Eun (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Cho, Seho (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University)
  • Received : 2013.12.30
  • Accepted : 2014.01.10
  • Published : 2014.01.31

Abstract

Multi-walled carbon nanotube (MWCNT)/epoxy composites are prepared by a vacuum assisted resin transfer molding (VARTM) method. The mechanical properties, fracture surface morphologies, and thermal stabilities of these nanocomposites are evaluated for epoxy resins with various amounts of MWCNTs. Composites consisting of different amounts of MWCNTs displayed an increase of the work of adhesion between the MWCNTs and the matrix, which improved both the tensile and impact strengths of the composites. The tensile and impact strengths of the MWCNT/epoxy composite improved by 59 and 562% with 0.3 phr of MWCNTs, respectively, compared to the epoxy composite without MWCNTs. Thermal stability of the 0.3 phr MWCNT/epoxy composite increased compared to other epoxy composites with MWCNTs. The enhancement of the mechanical and thermal properties of the MWCNT/epoxy nanocomposites is attributed to improved dispersibility and strong interfacial interaction between the MWCNTs and the epoxy in the composites prepared by VARTM.

Keywords

References

  1. Gabr MH, Elrahman MA, Okubo K, Fujii T. Effect of microfibrillated cellulose on mechanical properties of plain-woven CFRP reinforced epoxy. Compos Struct, 92, 1999 (2010). http://dx.doi.org/10.1016/j.compstruct.2009.12.009.
  2. Bagheri R, Pearson RA. Role of particle cavitation in rubbertoughened epoxies: II. Inter-particle distance. Polymer, 41, 269 (2000). http://dx.doi.org/10.1016/S0032-3861(99)00126-3.
  3. Kawaguchi T, Pearson RA. The effect of particle-matrix adhesion on the mechanical behavior of glass filled epoxies. Part 2. A study on fracture toughness. Polymer, 44, 4239 (2003). http://dx.doi.org/10.1016/S0032-3861(03)00372-0.
  4. Mahfuz H, Adnan A, Rangari VK, Jeelani S, Jang BZ. Carbon nanoparticles/whiskers reinforced composites and their tensile response. Composites A, 35, 519 (2004). http://dx.doi.org/10.1016/j.compositesa.2004.02.002.
  5. Evora VMF, Shukla A. Fabrication, characterization, and dynamic behavior of polyester/TiO2 nanocomposites. Mater Sci Eng A, 361, 358 (2003). http://dx.doi.org/10.1016/S0921-5093(03)00536-7.
  6. Rodgers RM, Mahfuz H, Rangari VK, Chisholm N, Jeelani S. Infusion of SiC nanoparticles into SC-15 epoxy: an investigation of thermal and mechanical response. Macromol Mater Eng, 290, 423 (2005). http://dx.doi.org/10.1002/mame.200400202.
  7. Pervin F, Zhou Y, Rangari VK, Jeelani S. Testing and evaluation on the thermal and mechanical properties of carbon nano fiber reinforced SC-15 epoxy. Mater Sci Eng A, 405, 246 (2005). http://dx.doi.org/10.1016/j.msea.2005.06.012
  8. Liao YH, Marietta-Tondin O, Liang Z, Zhang C, Wang B. Investigation of the dispersion process of SWNTs/SC-15 epoxy resin nanocomposites. Mater Sci Eng A, 385, 175 (2004). http://dx.doi.org/10.1016/j.msea.2004.06.031.
  9. Ma PC, Kim JK, Tang BZ. Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Composites Sci Technol, 67, 2965 (2007). http://dx.doi.org/10.1016/j.compscitech.2007.05.006.
  10. Lanticse LJ, Tanabe Y, Matsui K, Kaburagi Y, Suda K, Hoteida M, Endo M, Yasuda E. Shear-induced preferential alignment of carbon nanotubes resulted in anisotropic electrical conductivity of polymer composites. Carbon, 44, 3078 (2006). http://dx.doi.org/10.1016/j.carbon.2006.05.008.
  11. Chen Q, Dai L, Gao M, Huang S, Mau A. Plasma activation of carbon nanotubes for chemical modification. J Phys Chem B, 105, 618 (2000). http://dx.doi.org/10.1021/jp003385g.
  12. Breuer O, Sundararaj U. Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos, 25, 630 (2004). http://dx.doi.org/10.1002/pc.20058.
  13. Coleman JN, Khan U, Blau WJ, Gun'ko YK. Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon, 44, 1624 (2006). http://dx.doi.org/10.1016/j.carbon.2006.02.038.
  14. Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes--the route toward applications. Science, 297, 787 (2002). http://dx.doi.org/10.1126/science.1060928.
  15. Xie XL, Mai YW, Zhou XP. Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R, 49, 89 (2005). http://dx.doi.org/10.1016/j.mser.2005.04.002.
  16. Sun YP, Fu K, Lin Y, Huang W. Functionalized carbon nanotubes: properties and applications. Acc Chem Res, 35, 1096 (2002). http://dx.doi.org/10.1021/ar010160v.
  17. Kim JA, Seong DG, Kang TJ, Youn JR. Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon, 44, 1898 (2006). http://dx.doi.org/10.1016/j.carbon.2006.02.026.
  18. Gojny FH, Schulte K. Functionalisation effect on the thermomechanical behaviour of multi-wall carbon nanotube/epoxy-composites. Composites Sci Technol, 64, 2303 (2004). http://dx.doi.org/10.1016/j.compscitech.2004.01.024.
  19. Zhu J, Peng H, Rodriguez-Macias F, Margrave JL, Khabashesku VN, Imam AM, Lozano K, Barrera EV. Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes. Adv Funct Mater, 14, 643 (2004). http://dx.doi.org/10.1002/adfm.200305162.
  20. Hsiao KT, Gillespie JJW, Fink BK, Mathur R, Advani SG. A closed form solution for flow during the vacuum assisted resin transfer molding process. J Manuf Sci Eng, 122, 463 (1999). http://dx.doi.org/10.1115/1.1285907.
  21. Hsiao KT, Devillard M, Advani SG. Simulation based flow distribution network optimization for vacuum assisted resin transfer moulding process. Modell Simul Mater Sci Eng, 12, S175 (2004). http://dx.doi.org/10.1088/0965-0393/12/3/S08.
  22. Oh JH, Lee DG. Cure cycle for thick glass/epoxy composite laminates. J Compos Mater, 36, 19 (2002). http://dx.doi.org/10.1177/0021998302036001300.
  23. Zhou Y, Pervin F, Lewis L, Jeelani S. Experimental study on the thermal and mechanical properties of multi-walled carbon nanotube-reinforced epoxy. Mater Sci Eng A, 452-453, 657 (2007). http://dx.doi.org/10.1016/j.msea.2006.11.066.
  24. Thostenson ET, Li C, Chou TW. Nanocomposites in context. Composites Sci Technol, 65, 491 (2005). http://dx.doi.org/10.1016/j.compscitech.2004.11.003.
  25. Thostenson ET, Chou TW. Aligned multi-walled carbon nanotubereinforced composites: processing and mechanical characterization. J Phys D, 35, L77 (2002). http://dx.doi.org/10.1088/0022-3727/35/16/103.
  26. Basara C, Yilmazer U, Bayram G. Synthesis and characterization of epoxy based nanocomposites. J Appl Polym Sci, 98, 1081 (2005). http://dx.doi.org/10.1002/app.22242.
  27. Chen ZK, Yang JP, Ni QQ, Fu SY, Huang YG. Reinforcement of epoxy resins with multi-walled carbon nanotubes for enhancing cryogenic mechanical properties. Polymer, 50, 4753 (2009). http://dx.doi.org/10.1016/j.polymer.2009.08.001.
  28. Nieu NH, Tan TTM, Huong NL. Epoxy-phenol-cardanol-formaldehyde systems: thermogravimetry analysis and their carbon fiber composites. J Appl Polym Sci, 61, 2259 (1996). http://dx.doi.org/10.1002/(SICI)1097-4628(19960926)61:13<2259::AIDAPP3>3.0.CO;2-B.
  29. Saito S, Sasabe H, Nakajima T, Yada K. Dielectric relaxation and electrical conduction of polymers as a function of pressure and temperature. J Polym Sci A-2, 6, 1297 (1968). http://dx.doi.org/10.1002/pol.1968.160060708.

Cited by

  1. Influence of MWCNTs on Fracture Toughness of MWCNTs/Nickel-Pitch Fiber/Epoxy Composites vol.28, pp.6, 2015, https://doi.org/10.7234/composres.2015.28.6.361
  2. Mechanical Property and Thermal Stability of Epoxy Composites Containing Poly(ether sulfone) vol.39, pp.3, 2015, https://doi.org/10.7317/pk.2015.39.3.426
  3. Mechanical and Thermal Properties of Epoxy Composites Reinforced Fluorinated Illite and Carbon Nanotube vol.27, pp.3, 2016, https://doi.org/10.14478/ace.2016.1033
  4. High-performance bismaleimide resins with low cure temperature for resin transfer molding process vol.29, pp.3, 2017, https://doi.org/10.1177/0954008316642278
  5. Thermal and Flame Retardancy Behavior of Oil Palm Based Epoxy Nanocomposites pp.1572-8900, 2017, https://doi.org/10.1007/s10924-017-1087-1
  6. Prediction of mechanical properties of MWCNT-reinforced composites using the RVE model vol.32, pp.18, 2018, https://doi.org/10.1142/S0217984918501968
  7. Interfacial mechanical properties of carbon nanotube-deposited carbon fiber epoxy matrix hierarchical composites vol.25, pp.8, 2018, https://doi.org/10.1080/09276440.2018.1439620
  8. Assessing the Critical Multifunctionality Threshold for Optimal Electrical, Thermal, and Nanomechanical Properties of Carbon Nanotubes/Epoxy Nanocomposites for Aerospace Applications vol.6, pp.1, 2019, https://doi.org/10.3390/aerospace6010007