DOI QR코드

DOI QR Code

Criteria for Evaluating Scientific Models Used by Pre-service Elementary Teachers

예비 초등 교사들의 과학 모델 평가 기준

  • Received : 2014.01.10
  • Accepted : 2014.04.20
  • Published : 2014.04.30

Abstract

The purpose of this study is to explore evaluation criteria that pre-service elementary teachers employ as they evaluate and select models to explain electric circuits. Thirty junior students in a university of education have participated in the study as a part of the science education course in which they were enrolled. The lessons for the participants have been organized as a cyclic sequence of different modeling pedagogies including the expressive, experimental, and evaluative modeling. The pre-service teachers have been given five electric circuits in order and asked to create models and further develop them through peer discussion. Their modeling activities have been video- or audio-recorded, and the recordings and their transcripts have been analyzed using a framework of model evaluation criteria. It reveals that the types and frequencies of evaluation criteria used are different between situations of model development and model selection. While empirical and theoretical criteria have been used dominantly in both situations, more various criteria have been employed in the situation where the pre-service teachers selected one model among alternatives. Implications for science education and science education research have been suggested.

연구의 목적은 예비 초등 교사들이 여러 가지 전기회로를 설명하기 위한 모델을 개발하고 선택하는 과정에서 동원하는 모델 평가 기준들을 탐색하는 것이었다. 한 교육대학교에서 과학교육 강좌를 수강하는 30명의 3학년 학생들이 연구에 참여하였다. 이들을 위한 수업은 표현적, 실험적, 평가적 모델링을 포함하는 순환적 계열에 따라 조직되었다. 예비 교사들에게 다섯 개의 전기회로를 차례로 제공하고, 그것을 설명할 수 있는 모델을 개발하고 동료들 간의 토론을 통해 점차 모델을 개선해 가도록 하였다. 예비 교사들의 모델링 활동을 모두 녹음 또는 녹화하였고, 모델 평가 기준의 분석틀을 이용하여 녹음 또는 녹화된 것과 전사본을 분석하였다. 그 결과 모델을 개발 개선하는 상황과 모델을 선택하는 상황에 동원되는 모델 평가 기준의 유형과 빈도에 차이가 있음을 알 수 있었다. 즉, 경험적 기준과 이론적 기준이 두 상황에서 모두 주된 평가 준거의 역할을 하였지만, 예비 교사들이 여러 가지 대안적인 모델들 중 하나를 선택하는 상황에서 좀 더 다양한 평가 기준들이 사용되었다. 본 연구가 과학 교육과 과학 교육 연구에 시사하는 점들을 제안하였다.

Keywords

References

  1. Abi-El-Mona, I., & Abd-El-Khalick, F. (2011). Perceptions of the nature and 'goodness' of argument among college students, science teachers, and scientists. International Journal of Science Education, 33(4), 573-605. https://doi.org/10.1080/09500691003677889
  2. Berland, L. K., & Reiser, B. J. (2008). Making sense of argumentation and explanation. Science Education, 93, 26-55.
  3. Braaten, M., & Windschitl, M. (2011). Working toward a stronger conceptualization of scientific explanation for science education. Science Education, 95, 639-669. https://doi.org/10.1002/sce.20449
  4. Brewer, W., Chinn, C. A., & Samarapungavan, A. (1998). Explanation in scientists and children. Minds and Machines, 8, 119-136. https://doi.org/10.1023/A:1008242619231
  5. Bottcher, F., & Meisert, A. (2011). Argumentation in science education: A model-based framework. Science & Education, 20, 103-140. https://doi.org/10.1007/s11191-010-9304-5
  6. Campbell, T., Oh, P. S., & Neilson, D. (2012). Discursive modes and their pedagogical functions in model-based inquiry (MBI) classrooms. International Journal of Science Education, 34(15), 2393-2419. https://doi.org/10.1080/09500693.2012.704552
  7. Campbell, T., Oh, P. S., & Neilson, D. (2013). Reification of five types of modeling pedagogies with model-based inquiry (MBI) modules for high school science classrooms. In M. S. Khine & I. M. Saleh (Eds.), Approaches and strategies in next generation science learning (pp. 106-126). Hershey, PA: IGI Global.
  8. Cagagnetto, A. (2010). Argument to foster scientific literacy: A review of argument interventions in K-12 science contexts. Review of Educational Research, 336-371.
  9. Cavagnetto, A. (2011, September). The multiple faces of argument in school science. Science Scope, 35(1), 34-37.
  10. Chauvire, C. (2005). Peirce, Popper, abduction, and the idea of a logic of discovery. Semiotica, 153(1-4), 209-221.
  11. Clark, D. B., & Sengupta, P. (2013). Argumentation and modeling: Integrating the products and practices of science to improve science education. In M. S. Khine & I. M. Saleh (Eds.), Approaches and strategies in next generation science learning (pp. 85-105). Hershey, PA: IGI Global.
  12. Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287-312. https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<287::AID-SCE1>3.0.CO;2-A
  13. Hodson, D. (2001). Inclusion without assimilation: Science education from an anthropological and metacognitive perspective. Canadian Journal of Science, Mathematics and Technology Education, 1(2), 161-182.
  14. Kordig, C. R. (1978). Discovery and justification. Philosophy of Science, 45, 110-117. https://doi.org/10.1086/288782
  15. Kuhn, T. (1974). Objectivity, value judgment, and theory choice. In T. Kuhn, The essential tension: Selected studies in the scientific traditon and change (pp. 320-339). Chicago, IL: The University of Chicago Press.
  16. Lee, S., Kim, C.-J., Choe, S.-U., Yoo, J., Park, H., Kang, H., & Kim, H.-B. (2012). Exploring the patterns of group model development about blood flow in the heart and reasoning process by small group interaction. Journal of the Korean Association for Science Education, 32(5), 805-822.
  17. McDermott. L. C., Shaffer. P. S., & The Physics Education Group at the University of Washington (2002). Tutorials in introductory physics. Upper Saddler River, NJ: Prentice-Hall.
  18. National Research Council (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Committee on a Conceptual Framework for New K-12 Science Education Standards. Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.
  19. Nelson, M. M., & Davis, E. A. (2012). Preservice elementary teachers' evaluations of elementary students' scientific models: An aspect of pedagogical content knowledge for scientific modeling. International Journal of Science Education, 34(12), 1931-1959. https://doi.org/10.1080/09500693.2011.594103
  20. Nielsen, J. A. (2013). Dialectical features of students' argumentation: A critical review of argumentation studies in science education. Research in Science Education, 43(1), 371-393. https://doi.org/10.1007/s11165-011-9266-x
  21. Oh, P. S., & Oh, S. J. (2011a). A study on the processes of elaborating hypotheses in abductive inquiry of preservice elementary school teachers. Journal of the Korean Association for Science Education, 31(1), 128-142.
  22. Oh, P. S., & Oh, S. J. (2011b). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109-1130. https://doi.org/10.1080/09500693.2010.502191
  23. Oh, P. S., & Oh, S. J. (2013, September). Modeling sunspots: How Korean high school students used two types of modeling in their study of the Sun. The Science Teacher, 80(6), 51-56.
  24. Osborne, J. F., & Patterson, A. (2011). Scientific argument and explanation: A necessary distinction? Science Education, 95, 627-638. https://doi.org/10.1002/sce.20438
  25. Passmore, C. M., & Svoboda, J. (2012). Exploring opportunities for argumentation in modeling classrooms. International Journal of Science Education, 34(10), 1535-1554. https://doi.org/10.1080/09500693.2011.577842
  26. Parnafes, O. (2012). Developing explanations and developing understanding: Students explains the phases of the moon using visual representations. Cognition and Instruction, 30(4), 359-403. https://doi.org/10.1080/07370008.2012.716885
  27. Pluta, W. J., Chinn, C. A., & Duncan, R. G. (2011). Learners' epistemic criteria for good scientific models. Journal of Research in Science Teaching, 48(5), 486-511. https://doi.org/10.1002/tea.20415
  28. Samarapungavan, A. (1992). Children's judgments in theory choice tasks: Scientific rationality in childhood. Cognition, 45, 1-32. https://doi.org/10.1016/0010-0277(92)90021-9
  29. Sampson, V., Grooms, J., & Walker, J. (2011). Argument-driven inquiry as a way to help students learn how to participate in scientific argumentation and craft written arguments: An exploratory study. Science Education, 95, 217-257. https://doi.org/10.1002/sce.20421
  30. Sutton, C. (1996). The scientific model as a form of speech. In G. Welford, J. Osborne, & P. Scott (Eds.), Research in science education in Europe: Current issues and themes (pp. 143-152). London, UK: The Falmer Press.
  31. Thagard, P. (1978). The best explanation: Criteria for theory choice. The Journal of Philosophy, 75(2), 76-92. https://doi.org/10.2307/2025686
  32. Thagard, P. (2012). The cognitive science of science: Explanation, discovery, and conceptual change. Cambridge, MA: The MIT Press.
  33. Toulmin, S. E. (2003). The uses of argument. Cambridge, UK: Cambridge University Press.

Cited by

  1. 초등과학영재들의 자연선택 개념 형성을 위한 논변활동 효과 분석 vol.36, pp.4, 2016, https://doi.org/10.14697/jkase.2016.36.4.0591
  2. 블랙박스 시뮬레이션에 참여한 초등예비교사의 모형 구성의 특징과 인식적 기준 vol.38, pp.3, 2014, https://doi.org/10.14697/jkase.2018.38.3.305
  3. 과학교육론 교재에서 나타나는 귀납, 연역, 가설연역, 귀추의 의미 혼선 vol.43, pp.1, 2014, https://doi.org/10.21796/jse.2019.43.1.79