DOI QR코드

DOI QR Code

A Development of Seismic Rehabilitation Method of RC Buildings Strengthened with X-Bracing Using Carbon Fiber Composite Cable

X-가새형 탄소섬유케이블을 이용한 중·저층 철근콘크리트 건물의 내진보강법 개발

  • 이강석 (전남대학교 공과대학 건축학부)
  • Received : 2013.11.18
  • Accepted : 2013.12.18
  • Published : 2014.05.30

Abstract

Improving the earthquake resistance of buildings through seismic retrofitting using steel braces can result in brittle failure at the connection between the brace and the building, as well as buckling failure of the braces. In this study, a non-compression cross-bracing system using the Carbon Fiber Composite Cable (CFCC), which consists of CFCC bracing and bolt connection was proposed to replace the conventional steel bracing. This paper presented the seismic resistance of a reinforced concrete frame strengthened using CFCC X-bracing. Cyclic loading tests were carried out, and the maximum load carrying capacity and ductility were investigated, together with hysteresis of the lateral load-drift relations. Test results revealed that the CFCC X-bracing system installed RC frames enhanced markedly the strength capacity and no buckling failure of the bracing was observed.

본 연구에서는 기존 강재브레이스 내진보강법이 가지는 좌굴문제 등 단점을 극복할 수 있는 중 저층 철근콘크리트 건축물에 효과적으로 적용할 수 있는 새로운 내진보강법을 개발하였다. Carbon Fiber Composite Cable (CFCC)을 이용하여 건축물 골조 외부에 X자 형태로 내진보강을 실시하고, 상부 및 하부 보 양 단부에 CFCC X-브레이싱을 고정하기 위해서 평판 및 돌출형 나사식 접합으로 내진보강을 실시하는 내진보강법으로서, 반복하중 실험을 통하여 내진보강 효과를 규명하였다. 실험체는 비교용 비보강 골조, 평판형 및 돌출형 CFCC X-브레이싱 내진보강 골조 실험체 총 3개를 제작하였다. 실험결과, 본 연구에서 개발한 CFCC 내진보강법은 강도증진형 내진보강법으로 드러났으며, 기존 강재브레이스 보강법 대비 중량증가가 거의 없으며, 재료자체가 압축에 대한 좌굴이 없으며, 경량이므로 시공성이 매우 우수하고 중량 및 체적대비 우수한 강도가 발휘될 뿐만 아니라 특히, CFCC의 직경을 변경함으로서 내진보강 목적 (강도 보강량)에 대응하여 내진성능을 쉽게 변화시킬 수 있는 장점이 있다.

Keywords

References

  1. Chang, H. Y., and Chiu, C. K. (2011), Performance assessment of buckling restrained braces, Procedia Engineering, 14, 2187-2195. https://doi.org/10.1016/j.proeng.2011.07.275
  2. KMA (2013), http://www.kma.go.kr/weather/earthquake/report.jsp.
  3. Maheri, M. R., and Sahebi, A. (1995), Experimental investigation on the use of steel bracing in reinforced concrete frames, Proceedings of the Second International Conference on Seismic and Earthquake Engineering, Iran, 775-784.
  4. Maheri, M. R., and Sahebi, A. (1997), Use of steel bracing in reinforced concrete frames, Engineering Structures, 19(12), 1018-1024. https://doi.org/10.1016/S0141-0296(97)00041-2
  5. MOCAT (2002), Safety and maintenance of the facilities master plan, 2002(318), 350.
  6. Oh, H. S., Sim, J. S., and Ju, M. K. (2008), Flexural Capacity of Concrete Beam Strengthened with Near-Surface Mounted Carbon Fiber Reinforced Polymer, Journal of the Korea Institute for Structural Maintenance and Inspection, 12(3), 84-94.
  7. Park, J. S., Park, Y. H., You, Y. J., Jung, W. T., and Kang, J. Y. (2005), RC beams strengthened by bonded or unbonded prestressed CFRP laminates, Journal of the Korea Concrete Institute, 17(1), 279-282.
  8. Sim, J. S. (1966), Development of the Repair and Rehabilitation Methods for R/C Structures, Research Report, R & D 94-0039, Hanyang University, 17-34.
  9. TOKYO ROPE (2013), CFCC-Cabon Fiber Composite Cable, Tokyo Rope MFG. CO., LTD.
  10. Viswanath, K. G., Prakash, K. B., and Desai, A. (2010), Seismic analysis of steel braced reinforced concrete frames, International Journal of Civil and Structural Engineering, 1(1), 114-122.
  11. Youssef, M. A., Ghaffarzadeh, H., and Nehdi, M. (2007), Seismic performance of RC frames with concentric internal steel bracing, Engineering Structures, 29, 1561-1568. https://doi.org/10.1016/j.engstruct.2006.08.027

Cited by

  1. Structural Performance of Curtain Wall Using Separate Interstory Modules and Three-Axis Mobile Fasteners vol.11, pp.5, 2020, https://doi.org/10.11004/kosacs.2020.11.5.034