DOI QR코드

DOI QR Code

Prediction of Long-term Residual Inter-laminar Shear Strength of Thermally Damaged GFRP Rebar

고온손상된 GFRP 보강근의 장기 잔존 계면전단강도 예측

  • Received : 2013.12.09
  • Accepted : 2014.03.06
  • Published : 2014.05.30

Abstract

Mechanical properties of GFRP rebars significantly decrease due to high temperature as well as alkalinity of concrete. This study focuses on the long-term reduction of inter-laminar shear strength of pre-damaged GFRP rebars by high temperature. For this investigation, bare GFRP rebar specimens were exposed to $270^{\circ}C$ for 1hour and then immerged in alkali solution for several months and tested in shear. No thermally conditioned specimens were immerged and tested for the comparisons. In results, the reduction of thermally damaged GFRP rebars was greater than that of no thermally damaged ones. Based on the accelerated experimental test data, an polynomial equation is presented for prediction of long-term residual inter-laminar shear strength of GFRP rebars previously damaged by high temperature.

GFRP 보강근의 역학적 성능은 고온과 콘크리트의 알칼리 환경에서 크게 감소된다. 본 연구에서는 GFRP 보강근이 열손상 뒤, 알칼리 환경에 추가로 노출되었을 때의 계면전단강도변화를 고찰하는데 집중하였다. 이를 위하여 GFRP 보강근 시편은 270도의 열에 1시간동안 노출된 후 알칼리 용액에 장기간 노출되었으며, 전단시험에 의하여 파괴되었다. 비교를 위하여 열손상이 없는 시편도 같은 기간 동안 알칼리 용액에 노출된 후 전단에 의하여 파괴되었다. 결과에서, 열손상을 받은 GFRP보강근의 계면전단강도의 감소가 열손상이 없는 보강근 보다 훨씬 큰 것으로 나타났다. 본 실험을 근거로 하여, 열손상을 미리 받은 GFRP 보강근이 알칼리에 노출되었을 때, 장기 잔존계면전단강도의 예측을 위한 2차식을 제시하였다.

Keywords

References

  1. Abanilla, M. A., Karbhari, V. M., and Li, Y. (2006), Interlaminar and intralaminar durability characterization of wet layup carbon/epoxy used in external strengthening, Composites: Part B, 37, 650-661. https://doi.org/10.1016/j.compositesb.2006.02.023
  2. Bisby, L. A., and Kodur, V. K. R. (2007), Evaluating the fire endurance of concrete slabs reinforced with FRP bars: considerations for a holistic approach, Composites : Part B, 38, 547-558. https://doi.org/10.1016/j.compositesb.2006.07.013
  3. Ceroni, F., Cosenza, E., Gaetano, M., and Pecce, M. (2006), Durability issues of FRP rebars in reinforced concrete members, Cement & Concrete Composites, 28, 857-868. https://doi.org/10.1016/j.cemconcomp.2006.07.004
  4. Chen, Y., Davalos, J. F., Ray, I., and Kim, H. Y. (2007), Accelerated aging tests for evaluations of durability performance of FRP reinforcing bars for concrete structures, Composite Structures, 78, 101-111. https://doi.org/10.1016/j.compstruct.2005.08.015
  5. Kim, H. Y., Park, Y. H., You, Y. J., and Moon, C. K. (2008), Short-term durability test for GFRP rods under various environmental conditions, Composite Structure, 83, 37-47. https://doi.org/10.1016/j.compstruct.2007.03.005
  6. Litherland, K. L., Oakley, D. R., and Proctor, B. A. (1981), The Use of accelerated ageing Procedures to Predict the Long Term Strength of GRC Composites, Cement and Concrete Research, 11, 455-466. https://doi.org/10.1016/0008-8846(81)90117-4
  7. Moon, D. Y. (2013), Critical Temperature for Inter-Laminar Shear Strength and Effect of Exposure Time of FRP Rebars, Journal of the Korea Concrete Institute, 25(1), 45-51. https://doi.org/10.4334/JKCI.2013.25.1.045
  8. Moon, D. Y., and Oh, H. S. (2011), Durability of GFRP Rebar with Ribs containing Milled Alkaline Resistant Glass Fibers, Magazine of the Korea Institute for Structural Maintenance and Inspection, 15(1), 281-287. https://doi.org/10.11112/jksmi.2011.15.1.281
  9. Moon, D. Y., and Oh, H. S. (2011), The Combined Effect of Concrete Environment and High Temperature on Interlaminar Shear Strength of FRP Reinforcement, Journal of the Korea Concrete Institute, 23(6), 749-756. https://doi.org/10.4334/JKCI.2011.23.6.749
  10. Park, C. G., Won, J. P., and Yoo, J. K. (2003), Long-Term Effect of Chemical Environments on FRP Reinforcing Bar for concrete Reinforcement, Journal of the Korea Concrete Institute, 15(6), 811-819. https://doi.org/10.4334/JKCI.2003.15.6.811
  11. Saafi, M. (2002), Effect of fire on FRP reinforced concrete members, Composite Structures, 58, 11-20. https://doi.org/10.1016/S0263-8223(02)00045-4