DOI QR코드

DOI QR Code

Evaluation of Crack Resistant Performance in Cement Mortar with Steel Fiber and CSA Expansion Admixture

CSA 팽창재를 혼입한 강섬유 보강 모르타르의 균열 저항성능 평가

  • Received : 2013.10.08
  • Accepted : 2013.12.10
  • Published : 2014.05.30

Abstract

Steel fiber is a effective composite for crack resistance and improve structural performance under tensile loading. This study presents an evaluation of crack resistance and structural performance in cement mortar with steel fiber and expansion agent through internal chemical prestressing. For this work, cement mortar samples with 10% replacement of cement binder with CSA (Calcium-Sulfo-Aluminate) expansion agent and 1% volume ratio of steel fiber are prepared. Including basic mechanical properties, initial cracking load and fracture energy are evaluated in cement mortar beam with notch. Initial cracking load and fracture energy in cement mortar with CSA and steel fiber increase by 1.75 and 1.41~1.53 times compared with those in cement mortar with steel fiber. With optimum mix design for steel fiber and CSA expansive agent, the composite with chemical prestressing can be applied to various members and effectively improve crack resistance to external loading.

강섬유는 콘크리트 부재의 인장영역에 효과적으로 작용하여 균열저항성을 높여주고 역학적 성능을 개선하는 것으로 알려져 있다. 본 연구는 팽창재를 사용한 강섬유 모르타르에 화학적 프리스트레싱을 인가하여 균열저항성 및 역학적 성능을 평가하는 연구이다. 이를 위해 시멘트 바인더의 10%를 치환한 CSA 팽장채가 사용되었으며 체적비 1%의 강섬유를 고려한 시멘트 모르타르 배합이 준비되었다. 기본적인 역학적인 성능평가 외에 노치를 가진 보를 제조하여 초기균열하중 및 파괴에너지를 평가하였다. 실험결과 강섬유와 CSA 팽창재를 혼입한 모르타르에서는 보통 강섬유 모르타르에 비하여 평균 1.75배의 균열저항성 하중이 증가하였으며, 파괴에너지 역시 1.41~1.53배 증가하였다. 최적의 강섬유 체적비와 팽창재의 혼입이 고려된다면 강섬유의 내부 화학적 프리스트레싱을 가진 복합재는 다양한 부재에 사용될 수 있으며, 외부하중에 효과적인 균열저감 기법으로 사용할 수 있다.

Keywords

References

  1. ACI Committee 544 (1999), Design Consideration for Steel Fiber Reinforced Concrete, ACI 544.4R.
  2. Adebar, P., Mindess, S., St. Pierre, D., Olund, B.(1997), Shear tests of fiber concrete beams without stirrups, ACI Structural Journal, 94(1), 68-76.
  3. Ahn, J. K. (2003), A Study on Evaluation of Crack Resistance in Chemically Prestressed Mortar, Master Thesis, Yonsei University (in Korean).
  4. Ahn, J. K., Shim, B., Song, H. W., Byun, K. J. (2003), A study on fracture characteristics of chemically prestressed mortar, KCI Spring Conference, 15(1), 828-832 (in Korean).
  5. Cho, C. G., Han, S. J., Kwon, M. H., Lim, C. K. (2012), Seismic performance evaluation of reinforced concrete columns by applying steel fiber-reinforced mortar at plastic hinge region, Journal of the Korea Concrete Institute, 24(3), 241-248 (in Korean). https://doi.org/10.4334/JKCI.2012.24.3.241
  6. Cho, I. H., Yang, J. S., Kim, J. H. (1999), A field application of non-shrinkage high strength concrete using CSA expansive additives, Proceedings of KCI, 11(2), 77-80 (in Korean).
  7. Han, C. G., Bahn, H. Y., Jun, B. C., Hong, S. H. (1998), A study on the properties of high performance concrete using CSA expansive additivies, Journal of Architecture Institute of Korea, 14(11), 66-70 (in Korean).
  8. Han, C. G., Han, M. C., Park, C. J. (2011), Study on the estimation of drying shrinkage of the concrete using CSA expansive additive based on regression analysis, Journal of Architecture Institute of Korea, 27(9), 109-116 (in Korean).
  9. Kim, Y. K. (2003), A Study on Evaluation of Crack Resistance in Chemically Prestressed Steel Fiber Reinforced Concrete, Master Thesis, Yonsei University (in Korean).
  10. Maltese, C., Pistolesi, C., Lolli, A., Bravo, A., Cerulli, T., Salvioni, D. (2005), Combined effect of expansive and shrinkage reducing admixtures to obtain stable and durable mortars, Cement and Concrete Research, 35(2), 2244-2251. https://doi.org/10.1016/j.cemconres.2004.11.021
  11. Nagataki, S., Gomi, H. (1998), Expansive admixtures (mainly ettringite), Cement and Concrete Composites, 20(2-3), 163-170. https://doi.org/10.1016/S0958-9465(97)00064-4
  12. Okamura, H., Maekawa, K. (1991), Nonlinear Analysis and Constitutive Models of Reinforced Concrete. Tokyo (Japan), Gihodo-Shuppan, 102-181.
  13. Park, H. Y., Kim, C. Y., Choi, I. C., Bae, S. W., Ryu, J. H. (2001), Chemically prestressed precast concrete box culvert with expansive additives, Journal of the Korea Concrete Institute, 13(1), 43-51.
  14. Rhee, I. K., Kim, K. D., Kim, T. W., Lee, J. S. (2010), Heat of hydration and thermal crack control for floating concrete mass foundation, Journal of the Korea Institute for Structural Maintenance and Inspection, 14(1), 156-164 (in Korean).
  15. Sahamitmongkol, R., Tanaka, Y., and Kishi, T. (2002), Cracking Behaviors of chemical prestressed reinforced concrete members, JSCE Fourth International Summer Symposium, Kyoto, JAPAN, 5-13 (in Japanese).
  16. Song, H. W., Cho, H. J., Park, S. S., Byun, K. J., Maekawa, K. (2001), Early-age cracking resistance evaluation of concrete structure, Concrete Science and Engineering, 3(1), 62-72.
  17. Song, H. W., Kim, H. J., Kwon, S. J., Lee, C. H., Park, C. K. (2005), Prediction of service life in cracked reinforced concrete structures subjected to chloride attack and carbonation, 6th International Congress Global Construction: Ultimate Concrete Opportunities, Dundee, Scotland, 5-7 July, Vol Cement Combinations for Durable Concrete, 767-776.
  18. Yoo, S. W., Kwon, S. J., Jung, S. H. (2012), Analysis technique for autogenous shrinkage on high performance concrete with mineral and chemical admixtures, Construction and Building Materials, 34(9), 1-10. https://doi.org/10.1016/j.conbuildmat.2012.02.005
  19. Yoshinori, K., Yuichi, U. (2002), Test methodfor fracture property of concrete, Concerte Journal, 40(2), 8-15 (in Japanese).