DOI QR코드

DOI QR Code

An Experimental Study on the Effect of Sensor Line Number on the Reactivity Characteristic of Corrosion Sensor Reactive with Chloride Ion to Immigrate into Concrete

콘크리트내로 침투하는 염소이온 반응형 부식센서의 응답특성에 미치는 센서 세선 수의 영향에 관한 실험적 연구

  • 이현석 (한양대학교 대학원 건축공학과) ;
  • 이한승 (한양대학교 건축학부)
  • Received : 2014.03.14
  • Accepted : 2014.04.09
  • Published : 2014.05.30

Abstract

In this study, the sensor response and sensitivity is experimented and analyzed quantitatively by the line numbers of chlorine ion reaction type corrosion sensor that is developed. The sensor response of the developed corrosion sensor is verified with properties of chlorine ion. The multilineal sensor is shown a large resistance change more than the single line sensor by damage of the sensor. And, the resistance change of sensor is as large as high concentration of NaCl aqueous solution, the sensitivity of multilineal sensor is higher than single line sensor's, and the depth of sensor's location is as large as the increasing of resistance change time (cycle). These results suggest that, the developed corrosion sensor could sense corrosion reaction, sensor sensitivity and change of resistance for chloride ion. Especially, It was judged that 7 line sensor was the most superior for monitoring chloride ion immigration into concrete.

본 연구에서는 콘크리트내로 침투하는 염소이온을 모니터링하기 위하여, 스크린프리트 기법으로 염소이온 반응형 부식센서를 개발하고, 센서의 세선 수가 부식반응도 및 민감도에 미치는 영향을 실험을 통하여 정량적으로 분석하였다. 개발된 부식센서를 이용하여 염소이온량에 따라 부식 반응도을 확인하였으며, 센서의 파괴정도에 따른 저항변화에서는 단선형 센서보다 다선형 센서에서 큰 저항 변화를 나타내었다. 또한, 부식센서는 NaCl 수용액의 농도가 높은 만큼 센서의 저항변화가 크고, 콘크리트 내에서 센서 종류에 따른 부식저항은 단선형보다 다선형에서 민감도가 높게 나타났으며, 센서의 매설깊이가 클수록 저항변화 사이클 (cycle)은 증가하였다. 이상의 결과로, 본 연구에서 개발된 부식센서는 염분에 대한 부식반응과 민감도, 저항의 변화를 감지할 수 있었으며, 특히 7세선이 우수한 결과를 나타내어, 염분의 침투정도를 모니터링 하는데 가장 적합하다고 판단된다.

Keywords

References

  1. Ann, K. Y., Song, H. W. (2007), Chloride threshold level for corrosion of steel in concrete, Corrosion Science, 49, 4113-4133. https://doi.org/10.1016/j.corsci.2007.05.007
  2. Cho, S. H., Han, N. H., Chung, L. (2002), Nondestructive Method to Measure the Corrosion Level of Reinforcing Bar : Focused on the Electro-potential and Resistivity, Architestural Institute of Korea, 18, 19-26.
  3. Joh, S. H. (2010), Fundamental Study on Developing Embedded Mini-Sensor for Nondestructive Diagnosis Corrosion of Rebar, Korea institute for Structural Maintenance Inspection, 14, 179-187.
  4. Kim, Y. C., Jang, S. Y., Cho, Y. B., Lee, H. S., Shin, S. W. (2003), On the Development of Monitoring Technique for Rebar Corrosion in Concrete using Sensor, Korea Concrete Institute, 15, 163-168. https://doi.org/10.4334/JKCI.2003.15.2.163
  5. Lee, H. S., Joh, S. H., Lee, H. S. (2012), Study on the Development of a Thin-film Corrosion Sensor for the monitoring of Cl Ion Penetration into Cementitious Materials, Advanced Materials Research, 415-417, 2074-2077.
  6. Lee, J. D. (2007), Corrosion diagnosis, Book Publishing Ilgwang, 41-49, 80-108.
  7. Park, W. J., Lee, H. S., Joh, S. H., Lee, H. S. (2014), Monitoring method for the chloride ion penetration in mortar by athin-film sensor reacting to chloride ion, Construction and Building Materials, 53, 403-410. https://doi.org/10.1016/j.conbuildmat.2013.11.095
  8. So, H. S. (2009), Influence of Environmental Factors and Reinforcing Steel Bars on the Measurement og Concrete Resistivity in RC Structures, Architestural Institute of Korea, 25, 91-94.
  9. Yoon, J. H. (1992), Non-Destructive Diagnosis on the Corrosion of Reinforcing Bar in Concrete, Korea Concrete Institute, 4, 75-78.