DOI QR코드

DOI QR Code

Development of Rhodamine-Based Fiber Optic Sensor for Detection of Mercury in Aqueous Environments

수용액 환경에서 수은 측정을 위한 로다민 기반의 광섬유 센서 개발

  • Lee, Ae Ri (Department of Energy & Environmental Engineering, Soonchunhyang University) ;
  • Kim, Yong Il (Department of Energy & Environmental Engineering, Soonchunhyang University) ;
  • Kim, Beom Kyu (Department of Energy & Environmental Engineering, Soonchunhyang University) ;
  • Park, Byung Gi (Department of Energy & Environmental Engineering, Soonchunhyang University)
  • 이애리 (순천향대학교 에너지환경공학과) ;
  • 김용일 (순천향대학교 에너지환경공학과) ;
  • 김범규 (순천향대학교 에너지환경공학과) ;
  • 박병기 (순천향대학교 에너지환경공학과)
  • Received : 2014.03.17
  • Accepted : 2014.05.22
  • Published : 2014.05.31

Abstract

A Rhodamine-based fiber-optic sensor has been developed to detect mercury ions in aqueous environments. The fiber-optic sensor was composed of a mercury-sensing thin film, plastic optical fibers, and a spectrometer. The mercury-sensing thin film with the synthesized Rhodamine derivatives was fabricated with Sol-Gel process. A light emitted by a light source is guided by plastic optical fibers into the thin film in an aqueous solution and a reflected light is analyzed with the spectrometer. The experiment exhibits that an absorbance in the thin film is increased as mercury concentration is increased in the solution and the absorbance by mercury is higher than that by other heavy metals. The fiber-optic sensor exhibits high chromogenic phenomenon of mercury ions among various heavy metals and the correlation between absorbance and mercury concentration in the aqueous environments.

Keywords

References

  1. P. S. Kwon, J. K. Kim, and J. W. Kim, "Heavy metal ion detection in living cell using fluorescent chemosensor", J. Korean Chem. Soc., Vol. 54, No. 4, pp. 451-459, 2010. https://doi.org/10.5012/jkcs.2010.54.4.451
  2. H. H. Qazi, A. B. bin Mohammad, and M. Akram, "Recent progress in optical chemical sensors", J. Sensors, Vol. 12, pp. 16522-16556, 2012. https://doi.org/10.3390/s121216522
  3. Y. A. Son and J. M. Park, "Rhodamine 6G based new fluorophore chemosensor toward $Hg^{2+}$", J. Textile Coloration and Finishing., Vol. 24, No. 3, pp. 158-164, 2012. https://doi.org/10.5764/TCF.2012.24.3.158
  4. W. Yantasee, Y. Lin, T. S. Zemanian, and G. E. Fryxell, "Voltammetric detection of lead(II) and mercury(II) using a carbon paste electrode modified with thiol self-assembled monolayer on mesoporous silica (SAMMS)", J. The Royal Society of Chemistry, Vol. 128, pp. 467-472, 2003.
  5. H. Erxleben and J. Ruzlcka, "Atomic absorption spectroscopy for mercury, automated by sequential injection and miniaturized in lab-on-valve system", Anal. Chem., Vol. 77, pp. 5124-5128, 2005. https://doi.org/10.1021/ac058007s
  6. T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical fiber sensor technology", J. IEEE Transactions on Microwave theory and Techniques, Vol. MTT-30, No. 4, 1982.
  7. E. Noelting and K. Dziewonsky, "Ber. Dtsch", Chem. Ges., Vol. 38, p. 3516, 1905. https://doi.org/10.1002/cber.190503803186
  8. H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim, and J. Y. Yoon, "A new trend in rhodamine-based chemosensors: Application of spirolactam ring-opening to sensing ions", Chem. Soc. Rev., Vol. 37, pp. 1465-1472, 2008. https://doi.org/10.1039/b802497a
  9. S. He, Q. Liu, Y. Li, F. Wei, S. Cai, Y. Lu, and X. Zeng, "Rhodamine 6G-based chemosensor for the visual detection of $Cu^{2+}$ and fluorescent detection of $Hg^{2+}$ in water", Chem. Res. Chin. Univ., Vol. 30, No. 1, pp. 32-36, 2014. https://doi.org/10.1007/s40242-014-3364-z
  10. T. Gao, K. M. Lee, and S. I. Yang, "Synthesis and characterization of Rhodamine based $Pb^{2+}$ selective fluorescence sensor", Toxical. Environ. Health. Sci., Vol. 1, No. 3, pp. 159-162, 2009. https://doi.org/10.1007/BF03216479
  11. K. N. Kim, M. G. Choi, J. H. Noh, S. D. Ahn, and S. K. Chang, "Rhodamine B hydrazide revisited: Chemodosimetric $Hg^{2+}$-selective signaling behavior in aqueous environments", Bull. Korean Chem. Soc., Vol. 29, No. 3, pp. 571-574, 2008. https://doi.org/10.5012/bkcs.2008.29.3.571
  12. D. Toptygin, B. Z. Packard, and L. Brand, "Resolution of absorption spectra of rhodamine 6G aggregates in aqueous solution using the law of mass action", J. Chemical Physics Letters, Vol. 277, pp. 430-435, 1997. https://doi.org/10.1016/S0009-2614(97)00943-3
  13. D. T. Quang, J. S. Wu, N. D. Luyen, T. Duong, N. D. Dan, N. C. Bao, and P. T. Quy, "Rhodamine-derived Schiff base for the selective determination of mercuric ions in water media", J. Spectro Chimica Acta Part A, Vol. 78, pp.753-756, 2011. https://doi.org/10.1016/j.saa.2010.12.010
  14. W. J. Yoo, J. K. Seo, K. W. Jang, J. S. Moon, K. T. Han, J. Y. Park, B. S. Lee, S. H. Cho, J. Y. Heo, and B. G. Park, "Development of reflection-type fiber-optic pH sensor using sol-gel film", J. Sensor Sci. & Tech., Vol. 20, No. 4, pp. 266-271, 2011. https://doi.org/10.5369/JSST.2011.20.4.266