DOI QR코드

DOI QR Code

Preparation and Characterization of Homogeneous Hydroxyapatite Sphere

균일한 Hydroxyapatite Sphere 제조 및 특성분석

  • Lee, Kang Huk (Energy Efficient Materials Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Dong Geun (Energy Efficient Materials Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Kwon, Woo Teck (Energy Efficient Materials Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Hyungsun (School of Materials Engineering, Inha University) ;
  • Kim, Hee Rae (Lidox Bio Co. Ltd.) ;
  • Kim, Younghee (Energy Efficient Materials Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Soo Ryong (Energy Efficient Materials Team, Korea Institute of Ceramic Engineering and Technology)
  • 이강혁 (한국세라믹기술원 에너지소재센터) ;
  • 신동근 (한국세라믹기술원 에너지소재센터) ;
  • 권우택 (한국세라믹기술원 에너지소재센터) ;
  • 김형순 (인하대학교 신소재공학부) ;
  • 김희래 ((주)리독스바이오) ;
  • 김영희 (한국세라믹기술원 에너지소재센터) ;
  • 김수룡 (한국세라믹기술원 에너지소재센터)
  • Received : 2013.11.13
  • Accepted : 2014.03.06
  • Published : 2014.05.31

Abstract

A hydroxyapatite microsphere was prepared using a spray-drying method. The change in the shape as a function of the slurry concentration and the change in the degree of shrinkage according to the heat-treatment temperatures were observed. To obtain biomaterials with improved bio-stability, $CaHPO_4{\cdot}2H_2O$ and $Ca(OH)_2$ were mixed at a ratio of 6 : 4 and then ball-milled to synthesize hydroxyapatite. The hydroxyapatite microsphere was prepared using 30 wt% ~ 80 wt% hydroxyapatite slurry by a spray-drying method. For concentrations lower than 50 wt% or higher than 80 wt%, doughnut-shaped microspheres were produced. However, perfect microspheres were produced when using slurry concentrations of 50 wt% ~ 70 wt%. A dense microstructure was observed after a heat treatment at temperatures higher than $1100^{\circ}C$ and the size was reduced by 24.3% at these temperatures.

Keywords

References

  1. L. L. Hench, "Bioceramics," J. Am. Ceram. Soc., 81 [7] 1705-27 (1998).
  2. E. Bouyer, F. Gitzhofer, and M. I. Boulos, "Morphological Study of Hydroxyapatite Nanocrystal Suspension," J. Mater. Sci. : Mater. in Med., 11 [8] 523-31 (2000). https://doi.org/10.1023/A:1008918110156
  3. W. Weng and J. L. Baptista. "A New Synthesis of Hydroxyapatite," J. Eur.Ceram. Soc., 17 [9] 1151-56 (1997). https://doi.org/10.1016/S0955-2219(96)00215-4
  4. I. R. Gibson, S. M. Best, and W. Bonfield, "Chemical Characterization of Silicon-substituted Hydroxyapatite," J. Biomed. Mater. Res., 44 [4] 422-28 (1999). https://doi.org/10.1002/(SICI)1097-4636(19990315)44:4<422::AID-JBM8>3.0.CO;2-#
  5. C. M. Serre, M. Papillard, P. Chavassieux, J. C. Voegel, and G. Boivin, "Influence of Magnesium Substituted on a Collagen-apatite Biomaterial on the Production of a Calcifying Matrix by Human Osteoblasts," J. Biomed. Mater. Res., 42 [4] 626-33 (1998). https://doi.org/10.1002/(SICI)1097-4636(19981215)42:4<626::AID-JBM20>3.0.CO;2-S
  6. T. Tian, D. Jiang, J. Zheng, and Q. Lim, "Synthesis of Si-Substituted Mydroxyapatite by Wet Mechanochemical Method," Mater. Sci. Eng. C, 28 [1] 57-63 (2008). https://doi.org/10.1016/j.msec.2007.10.049
  7. T. Kokubo, S. B. Cho, K. Nakanishi, C. Ohtsuki, T. Kitsugi, T. Yamamuro, and T. Nakamura, "Dependence of Bone like Hydroxy-apatite Formation on Structure of Silica Gel," Bio-Ceramics, 7 49-54 (1994).
  8. S. Hayakawa, K. Tsuru, C. Ohtsuki, and A. Osaka, "Mechanism of Apatite Formation on a Sodium Glass in a Simulated Body Fluid," J. Am. Ceram. Soc., 82 [8] 2155-60 (1999).
  9. E. M. Carlisle, "Silicon: A Possible Factor in Bone Calcification," Science, 167 [3916] 279-80 (1970). https://doi.org/10.1126/science.167.3916.279
  10. A. Mortier, J. Lemaitre, L. Rodrique, and P.G. Rouxhet, "Synthesis and Thermal Behavior of Well- crystallized Calcium-deficent Phosphate Apatite," J. Solid State Chem., 78 215-19 (1989). https://doi.org/10.1016/0022-4596(89)90099-6
  11. S. J. Joris and C. H. Amberg, "The Nature of Deficiency in Nonstoichiometric Hydroxyapatite. II. Spectroscopic Studies of Calcium and Strontium Hydroxyapatites," J. Phys. Chem., 75 [20] 3172-78 (1971). https://doi.org/10.1021/j100689a025
  12. A. J. Ruys, "Silicon-Doped Hydroxyapatite," J. Aust. Ceram. Soc., 29 [1-2] 71-80 (1993).
  13. P. A. A. P. Marques, M. C. F. Magalhaes, R. N. Correia, and M. Vallet-Regi, "Synthesis and Characterization of Silicon-substituted Hydroxyapatite," Key Eng. Mater., 192-195 247-50 (2001). https://doi.org/10.4028/www.scientific.net/KEM.192-195.247
  14. R. D. Shannon and C. T. Prewitt, "Effective Ionic Radii in Oxides and Fluorides," Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., B25 925-46 (1969).
  15. M. I. Kay, R. A. Young, and A. S. Posner, "Crystal Structure of Hydroxyapatite," Nature, 204 1050 (1964). https://doi.org/10.1038/2041050a0
  16. S. R. Kim, J. H. Lee, Y. T. Kim, D. H. Riu, S. J. Jung, Y. J. Lee, S. C. Chung, Y. J. Lee, S. C. Chung, and Y. H. Kim, "Synthesis of Si, Mg Substituted Hydroxyapatites and their Sintering Behaviors," Biomaterials, 24 [8] 1389-98 (2003). https://doi.org/10.1016/S0142-9612(02)00523-9
  17. S. R. Kim, Y. Kim, S. J. Jung, and D. H. Riu "Synthesis and Characterization of Silicon Substituted Hydroxyapatite(in Korean)," J. Kor. Ceram. Soc., 38 [12] 1132-36 (2001).
  18. I. R. Gibson, S. M. Best, and W. Bonfield, "Effect of Silicon Substitution on the Sintering and Microstructure of Hydroxyapatite," J. Am. Ceram. Soc., 85 [11] 2771-77 (2002).
  19. N. Patel, S. M. Best, W. Bonfield, I. R. Gibson, K. A. Hing, E. Damien, and P. A. Revell, "A Comparative Study on the in Vivo Behavior of Hydroxyapatite and Silicon Substituted Hydroxyapatite Granules," J. Mater. Sci. : Mater. Med., 13 [12] 1199-206 (2002). https://doi.org/10.1023/A:1021114710076
  20. R. Sun, Y. Lu, and K. Chen, "Preparation and Characterization of Hollow Hydroxyapatite Microspheres by Spray Drying Method," Mater. Sci. Eng. C, 29 [4] 1088-92 (2009). https://doi.org/10.1016/j.msec.2008.08.010
  21. T. S. Pradeesh, M. C. Sunny, H. K. Varma, and P. Ramesh, "Preparation of Microstructured Hydroxyapatite Microspheres Using Oil in Water Emulsions," Bull. Mater. Sci., 28 [5] 383-90 (2005). https://doi.org/10.1007/BF02711223