DOI QR코드

DOI QR Code

Sonophotocatalytic Performance of Bi2Se3-Graphene/TiO2 Hybrid Nanomaterials Synthesized with a Microwave-assisted Method

  • Zhu, Lei (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Jo, Sun-Bok (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Ye, Shu (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Ullah, Kefayat (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2014.03.07
  • Accepted : 2014.05.03
  • Published : 2014.05.31

Abstract

This paper introduces a microwave-assisted synthesis method to prepare hybrid $Bi_2Se_3-GR/TiO_2$ nanocomposites, which exhibit superior properties over single component materials. The as-prepared composites were characterized by XRD, UV-vis absorbance spectra, SEM,TEM, EDX, and BET analyses, revealing uniform covering of the graphene nanosheet with $Bi_2Se_3$ and $TiO_2$ nanocrystals. For visible light photocatalysis of Rh.B, a significant enhancement in the reaction rate was consequently observed with $Bi_2Se_3-GR/TiO_2$ composites. The degradation rate($k_{app}$) obtained for sonophotocatalysis was $6.8{\times}10^{-3}min^{-1}$, roughly 2.2 times better than that of VL photocatalysis under higher concentrations of Rh.B. The sonophotocatalysis was faster due to greater formation of reactive radicals as well as an increase of the active surface area of the $Bi_2Se_3-GR/TiO_2$ composites. The high activity is attributed to the synergetic effects of high charge mobility and red shift of the absorption edge of $Bi_2Se_3-GR/TiO_2$.

Keywords

References

  1. K. Hashimoto, H. Irie, and A. Fujishima, "$TiO_2$ Photocatalysis: A Historical Overview and Future Prospects," Jpn. J. Appl. Phys., 44 [12] 8269-85 (2005). https://doi.org/10.1143/JJAP.44.8269
  2. M. Anpo and M. Takeuchi, "The Design and Development of Highly Reactive Titanium Oxide Photocatalysts Operating under Visible Light Irradiation," J. Catal., 216 [1-2] 505-16 (2003). https://doi.org/10.1016/S0021-9517(02)00104-5
  3. H. Irie, Y. Watanabe, and K.Hashimoto, "Nitrogen-concentration Dependence on Photocatalytic Activity of $TiO_2-_xN_x$ Powders," J. Phys. Chem., B, 107 [23] 5483-86 (2003). https://doi.org/10.1021/jp030133h
  4. H. Kisch, L. Zang, C. Lange, W. F. Maier, C. Meissner, and D. Angew, "Modified Amorphous Titania- A Hybrid Semiconductor for Detoxification and Current Generation by Visible Light," Chem. Int. Ed., 37 [21] 3034-36 (1998). https://doi.org/10.1002/(SICI)1521-3773(19981116)37:21<3034::AID-ANIE3034>3.0.CO;2-2
  5. D. Robert, "Photosensitization of $TiO_2\;by\;M_xO_y\;and\;M_xS_y$ Nanoparticles for Heterogeneous Photocatalysis Applications," Catal. Today., 122 [1-2] 20-26 (2007). https://doi.org/10.1016/j.cattod.2007.01.060
  6. J. C. Kim, J. Choi, Y. B. Lee, J. H. Hong, J. I. Lee, J. W. Yang, W. I. Lee, and N. H. Hur, "Enhanced Photocatalytic Activity in Composites of $TiO_2$ Nanotubes and CdS Nanoparticles," Chem. Commun., 48 5024-26 (2006).
  7. Y. Bessekhouad, D. Robert, and J. V. Weber, "$Bi_2S_3/TiO_2$ and CdS/$TiO_2$ Heterojunctions as an Available Configuration for Photocatalytic Degradation of Organic Pollutant," J. Photochem. Photobiol., A, 163 [3] 569-80 (2004). https://doi.org/10.1016/j.jphotochem.2004.02.006
  8. V. Stengl, S. Bakardjieva, N. Murafa, V. Houskova , and K. Lang, "Visible-light Photocatalytic Activity of $TiO_2$/ZnS Nanocomposites Prepared by Homogeneous Hydrolysis," Micropor. Mesopor. Mater., 110 [2-3] 370-78 (2008). https://doi.org/10.1016/j.micromeso.2007.06.052
  9. K. B. Tang, Y. T. Qian, J. H. Zeng, and X. G. Yang, "Solvothermal Route to Semiconductor Nanowires," Adv. Mater.,15 [5] 448-50 (2003). https://doi.org/10.1002/adma.200390104
  10. R. Luo, X. Sun, L. F. Yan, and W. M. Chen, "Synthesis and Optical Properties of Novel Nickel Disulfide Dendritic Nanostructures," Chem. Lett., 33 830-31 (2004). https://doi.org/10.1246/cl.2004.830
  11. K. Kadel, L. Kumari, W. Z. Li, J. Y. Huang, and P. Paula, "Provencio Synthesis and Thermoelectric Properties of $Bi_2Se_3$ Nanostructures," Nanoscale. Res. Lett., 6 [1] 57-63 (2011).
  12. J. C. Meyer, A. K. Geim, and M. I. Katsnelson, "The Structure of Suspended Graphene Sheets," Nature., 446 60-63 (2007). https://doi.org/10.1038/nature05545
  13. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Pottsand, and R. S. Ruoff, "Graphene and Graphene Oxide: Synthesis, Properties, and Applications," Adv. Mater., 22 [35] 3906-24 (2010). https://doi.org/10.1002/adma.201001068
  14. P. V. Kamat, "Graphene Based Nano Architectures. Anchoring Semiconductor and Metal Nanoparticles on a 2-Dimensional Carbon Support," J. Phys. Chem. Lett., 15 20-27 (2010).
  15. H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, "$P_{25}$-Graphene Composite as a High Performance Photocatalyst," ACS Nano.,4 [1] 380-86 (2010). https://doi.org/10.1021/nn901221k
  16. S. R. Kim, M. K. Parvez, and M. Chhowalla, "UV-reduction of Graphene Oxide and its Application as an Interfacial Layer to Reduce the Back-transport Reactions in Dye-sensitized Solar Cells," Chem. Phys. Lett., 483 [1-3] 124-27 (2009). https://doi.org/10.1016/j.cplett.2009.10.066
  17. G. M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, and R. Mulhaupt, "Palladium Nanoparticles on Graphite Oxide and its Functionalized Graphene Derivatives as Highly Active Catalysts for the Suzuki−Miyaura Coupling Reaction," J. Am. Chem. Soc.,131 8262-70 (2009). https://doi.org/10.1021/ja901105a
  18. R. Pasricha, S.Gupta, and A. K. Srivastava, "A Facile and Novel Synthesis of Ag-Graphene-based Nanocomposites," Small., 5 [20] 2253-59 (2009). https://doi.org/10.1002/smll.200900726
  19. R. Muszynski, B. Seger, and P. V. Kamat, "Decorating Graphene Sheets with Gold Nanoparticles," J. Phys. Chem., C, 112 [14] 5263-66 (2008). https://doi.org/10.1021/jp800977b
  20. J. Sun, H. Zhang, L. H. Guo, and L. X. Zhao, "Two-dimensional Interface Engineering of a Titania-Graphene Nanosheet Composite for Improved Photocatalytic Activity," ACS Appl. Mater. Interfaces., 5 [24] 13035-41 (2013). https://doi.org/10.1021/am403937y
  21. Y. Lin, K. Zhang, W. Chen, Y. Liu, Z. Geng, J. Zeng, N. Pan, L. Yan, X. Wang, and J. G. Hou,. "Dramatically Enhanced Photoresponse of Reduced Graphene Oxide with Linker-Free Anchored CdSe Nanoparticles," ACS Nano.,4 [6] 3033-38 (2010). https://doi.org/10.1021/nn100134j
  22. L. Davydov, E. P. Reddy, P. France, and P. G. Smirniotis, "Sonophotocatalytic Destruction of Organic Contaminants in Aqueous Systems on $TiO_2$ Powders,"Appl. Catal. B: Environ., 32 [1-2] 95-105 (2001). https://doi.org/10.1016/S0926-3373(01)00126-6
  23. A. B. Pandit, P. R. Gogate, and S. Mujumdar, "Ultrasonic Degradation of 2: 4: 6 Trichlorophenol in Presence of $TiO_2$ Catalyst," Ultrason. Sonochem., 8 [3] 227-31 (2001). https://doi.org/10.1016/S1350-4177(01)00081-5
  24. K. Ullah, S. Ye, L. Zhu, Z. D. Meng, S. Sarkar, and W. C. Oh, "Microwave Assisted Synthesis of a Noble Metal-graphene Hybrid Photocatalyst for High Efficient Decomposition of Organic Dyes under Visible Light," Mater. Sci. Eng. B., 180 20-26 (2014). https://doi.org/10.1016/j.mseb.2013.10.014
  25. S. Das, A. K. Mukhopadhyay, S. Datta, and D. Basu, "Prospects of Microwave Processing: An Overview," Bull. Mater . Sci., 31 [7] 1-13 (2009).
  26. L. Zhu, T. Ghosh, C. Y. Park, Z. D. Meng, and W. C. Oh, "Enhanced Sonocatalytic Degradation of Rhodamine B by Graphene-$TiO_2$ Composites Synthesized by an Ultrasonic-Assisted Method," Chin. J. Catal., 33 [7-8] 1276-83 (2012). https://doi.org/10.1016/S1872-2067(11)60430-0
  27. T. Ghosh, K. Y. Cho, K. Ullah, V. Nikam, C. Y. Park, Z. D. Meng, and W. C. Oh, "High Photonic Effect of Organic Dye Degradation by CdSe-graphene-$TiO_2$ Particles," J. Ind. Eng. Chem., 19 [3] 797-805 (2013). https://doi.org/10.1016/j.jiec.2012.10.020
  28. W. C. Oh and F. J. Zhang, "Preparation and Characterization of Graphene Oxide Reduced from a Mild Chemical Method," Asian. J. Chem., 23 875-79 (2011).
  29. D. Li, M. B. Muller, S. Giljem, and G. G. Wallace, "Processable Aqueous Dispersions of Graphene Nanosheets," Nat. Nanotechnol., 3 101-05 (2008). https://doi.org/10.1038/nnano.2007.451
  30. Y. Yu, W. T. Sun, Z. D. Hu, Q. Chen, and L. M.Peng, "Oriented $Bi_2Se_3$ Nano Ribbons Film: Structure, Growth, and Photoelectric Properties," Mater. Chem. Phys., 124 [11] 865-69 (2010). https://doi.org/10.1016/j.matchemphys.2010.08.012
  31. D. Cai and M. Song, "Preparation of Fully Exfoliated Graphite Oxide Nanoplatelets in Organic Solvents," J. Mater. Chem., 17 3678-80 (2007). https://doi.org/10.1039/b705906j
  32. J. G. Lei, N. Qie, J. Zhou, Y. Y. Hua, and T. H. Ji, "Preparation and Characterization of $TiO_2$ Nanobelts Deposited with $Bi_2Se_3$ Nanoplates," Mater.Lett., 83 108-11 (2012). https://doi.org/10.1016/j.matlet.2012.05.117
  33. C. Berberidou, I. Poulios, and N. P. Xekoukoulotakis, "Sonolytic, Photocatalytic and Sonophotocatalytic Degradation of Malachite Green in Aqueous Solutions," Appl. Catal. B-Environ., 74 [1-2] 63-72 (2007). https://doi.org/10.1016/j.apcatb.2007.01.013
  34. K. Zhang and W. C. Oh, "Kinetic Study of the Visible Light-induced Sonophotocatalytic Degradation of MB Solution in the Presence of Fe/$TiO_2$-MWCNT Catalyst," B. Kor. Chem. Soc., 31 [6] 1589-95(2010). https://doi.org/10.5012/bkcs.2010.31.6.1589