DOI QR코드

DOI QR Code

Properties of Low Temperature Sintering of La0.8Sr0.2Ga0.8Mg0.2-xZnxO2.8 (X = 0.0 - 0.05) Electrolyte

La0.8Sr0.2Ga0.8Mg0.2-xZnxO2.8(X=0.0~0.05) 전해질의 저온 소결 특성

  • Lim, Kyoung Tae (Department of Nano Material Engineering, Chungnam National University) ;
  • Lee, Chung Hwan (Kceracell Co., Ltd.) ;
  • Yu, Ji Haeng (Advanced Materials and Devices Laboratory, Korea Institute of Energy Research) ;
  • Peck, Dong-Hyun (Fuel Cell Laboratory, Korea Institute of Energy Research) ;
  • Baik, Kyeong Ho (Department of Nano Material Engineering, Chungnam National University)
  • 임경태 (충남대학교 신소재공학과) ;
  • 이충환 ((주)케이세라셀) ;
  • 유지행 (한국에너지기술연구원 창의소재연구실) ;
  • 백동현 (한국에너지기술연구원 연료전지연구실) ;
  • 백경호 (충남대학교 신소재공학과)
  • Received : 2014.03.13
  • Accepted : 2014.04.24
  • Published : 2014.05.31

Abstract

$La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2-x}Zn_xO_{2.8}$(LSGMZ, X=0-0.05) was prepared using a solid state reaction method. Two secondary phases ($LaSrGaO_4$ and $LaSrGa_3O_7$) of powders were identified by X-ray diffraction analysis. The relative amount of these secondary phases depended on the calcination conditions (temperature and time) and Zn content. The sintering density of LSGMZ was enhanced by increasing the Zn content and calcination temperature at the low sintering temperatures ($1250-1300^{\circ}C$). The relationship between the sintering density of LSGMZ and the synthesis conditions was discussed considering the phase analysis results.

Keywords

References

  1. N. Q. Minh, "Ceramic Fuel Cells," J. Am. Ceram. Soc., 76 563-88 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  2. R. A. George and N. F. Bessette, "Reducing the Manufacturing Cost of Tubular SOFC Technology," J. Power Sources, 71 [1-2] 131-37 (1998). https://doi.org/10.1016/S0378-7753(97)02735-3
  3. T. Ishihara, H. Matsuda, and Y. Takita, "Doped $LaGaO_3$ Perovskite-type Oxide as a New Oxide Ionic Conductor," J. Am. Ceram. Soc., 116 [9] 3801-03 (1994).
  4. M. Feng and J. B. Goodenough, "A Superior Oxide-Ion Electroyte," Eur. J. Solid State Inorg. Chem., T31 663-72 (1994).
  5. E. Djurado and M. Labeau, "Second Phases in Doped Lanthanum Gallate Perovskites," J. Eur. Ceram. Soc., 18 [10] 1397-404 (1998). https://doi.org/10.1016/S0955-2219(98)00016-8
  6. P. Huang, A. Horky, and A. Petric, "Interfacial Reaction between Nickel Oxide and Lanthanum Gallate during Sintering and its Effect on Conductivity," J. Am. Ceram. Soc., 82 [9] 2402-06 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02096.x
  7. A. C. Tas, P. J. Majewski, and F. Aldinger, "Chemical Preparation of Pure and Strontium- and/or Magnesium-Doped Lanthanum Gallate Powders," J. Am. Ceram. Soc., 83 [12] 2954-60 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01666.x
  8. K. Huang, M. Feng, and J. B. Goodenough, "Sol-Gel Synthesis of a New Oxide-Ion Conductor Sr- and Mg-Doped $LaGaO_3$ Perovskite," J. Am. Ceram. Soc., 79 [4] 1100-104 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08554.x
  9. M. Shi, N. Liu, Y. Xu, Y. Yuan, P. Majewski, and F. Aldinger, "Synthesis and Characterization of Sr and Mg Doped $LaGaO_3$ by Using Glycine Nitrate Combustion Method," J. Alloys Compd., 425 [1-2] 348-53 (2006). https://doi.org/10.1016/j.jallcom.2006.01.024
  10. P. Majewski, M. Rozumek, C. A. Tas, and F. Aldinger, "Process of (La, Sr)(Ga, Mg)$O_3$ Solid Electrolyte," J. Electroceram., 8 65-73 (2002). https://doi.org/10.1023/A:1015507520661
  11. C. L. Huang, J. L. Hou, C. L. Pan, C. Y. Huang, C. W. Peng, and C. H. Wei, "Effect of ZnO Additive on Sintering Behaviour and Microwave Dielectric Properties of 0.95Mg-$TiO_3-0.05CaTiO_3$ Ceramics," J. Alloys Compd., 450 [1-2] 359-63 (2008). https://doi.org/10.1016/j.jallcom.2006.10.132
  12. R. Zuo, J. Rodel, R. Chen, and L. Li, "Sintering and Electrical Properties of Lead-free $Na_{0.5}K_{0.5}NbO_3$," J. Am. Ceram. Soc., 89 [6] 2010-15 (2006). https://doi.org/10.1111/j.1551-2916.2006.00991.x
  13. S. Tao and J. T. S. Irivine, "A Stable, Easily Sintered Proton-conducting Oxide Electrolyte for Moderate-temperature Fuel Cells and Electrolyzers," Adv. Mater., 18 [12] 1581-84 (2006). https://doi.org/10.1002/adma.200502098
  14. P. Babilio and S. M. Haile, "Enhanced Sintering of Yttrium-doped Barium Zirconate by Addition of ZnO," J. Am. Ceram. Soc., 88 [9] 2362-68 (2005). https://doi.org/10.1111/j.1551-2916.2005.00449.x
  15. L. Sebastian, A. K. Shukla, and J. Goalakrishnan, "$La_{0.9}Sr_{0.1}Ga_{0.8}M_{0.2}O_{3-{\delta}}$ (M=Mn, Co, Ni, Cu or Zn): Transition Metal-substituted Derivatives of Lanthanumstrontium-gallium-magnesium (LSGM) Perovskite Oxide Ion Conductor," Bull. Mater. Sci., 23 [3] 169-73 (2000). https://doi.org/10.1007/BF02719904
  16. S. B. Ha, Y. H. Cho, Y. C. Kang, J. H. Lee, and J. H. Lee, "Effect of Oxide Additives on the Sintering Behaviour and Electrical Properties of Strontium- and Magnesium-doped Lanthanum Gallate," J. Eur. Ceram. Soc., 30 [12] 2593-601 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.05.007
  17. M. Rozumek, "Phase Equilibria Studies in the Quaternary Solid Oxide Fuel Cell System $La_2O_3-SrO-MgO-Ga_2O_3$ via Solution Chemical Processing Routes"; Ph.D. Thesis (Thesis Supervisor: Dr. P. J. Majewski). Max-Planck-Institute fur Metallforschung, Universitat Stuttgat, Germany, 2003.
  18. K. Q. Huang, R. S. Tichy, and J. B. Goodenough, "Superior Perovskite Oxide-ion Conductor, Strontium- and Magnesium-doped $LaGaO_3$: I, Phase Relationships and Electrical Properties," J. Am. Ceram. Soc., 81 [10] 2565-75 (1998).
  19. K. Q. Huang, R. S. Tichy, and J. B. Goodenough, "Superior Perovskite Oxide-ion Conductor, Strontium- and Magnesium-doped $LaGaO_3$: II, AC Impedance Spectroscopy," J. Am. Ceram. Soc., 81 [10] 2576-80 (1998).
  20. K. Q. Huang, R. S. Tichy, and J. B. Goodenough, "Superior Perovskite Oxide-ion Conductor, Strontium- and Magnesium-doped $LaGaO_3$: III, Performance Tests of Single Ceramic Fuel Cells," J. Am. Ceram. Soc., 81 [10] 2581-85 (1998).
  21. Y. H. Seong, S. H. Jo, P. Muralidharan, and D. K. Kim, "Synthesis and Characterization of LSGM Solid Electrolyte for Solid Oxide Fuel Cell(in Korean)," J. Kor. Ceram. Soc., 44 [12] 696-702 (2007). https://doi.org/10.4191/KCERS.2007.44.1.696