DOI QR코드

DOI QR Code

Preparation and characterization of nanoporous monolith with high thermal insulation performance

나노 기공성 단열 실리카 모노리스 제조 및 특성 연구

  • Choi, Hyun-Muk (Department of Chemical Engineering, Kyonggi University) ;
  • Kim, Seong-Woo (Department of Chemical Engineering, Kyonggi University)
  • 최현묵 (경기대학교 화학공학과) ;
  • 김성우 (경기대학교 화학공학과)
  • Received : 2014.02.10
  • Accepted : 2014.02.27
  • Published : 2014.03.30

Abstract

In this study, we synthesized two different silica monoliths by using sol-gel, solvent exchange, surface modification, ambient pressure drying processes, and surfactant-based templating technique followed by calcination process. All of the prepared two silica monoliths showed crack-free appearance with fairly good transparency, and furthermore were confirmed to have extremely high porosity, specific surface area, and mean pore size below 30 nm. The silica aerogel sample exhibited finer and more homogeneous nano-sized pore structure due to spring back effect caused by surface modification, which resulted in better thermal insulation performance. Based on measured thermal conductivities and theoretical relationship, multi-layered glass window system in which silica monolith prepared in this study was inserted as a middle layer was revealed to have superior thermal insulation performance compared to conventional air-inserted glass window system.

본 연구에서는 졸-겔, 용매치환, 표면개질, 상압건조 공정과 계면활성제에 의한 템플레이팅(templating) 공법 및 소결 공정을 이용하여 실리카 에어로겔 모노리스와 메조포러스 실리카 모노리스를 각각 합성하였다. 제조된 두 종류의 실리카 모노리스는 균열이 없이 비교적 투명하였으며, 매우 높은 기공율(92-94%) 및 비표면적($800-840m^2/g$)과 수 십 nm 수준의 기공 크기를 갖는 것으로 확인되었다. 표면개질을 적용한 실리카 에어로겔 샘플이 스피링백 효과로 인하여 메조포러스 실리카 모노리스에 비해 더욱 미세하고 균질한 나노 기공 구조를 보였을 뿐만 아니라, 그 단열 성능도 더욱 우수한 것으로 나타났다. 본 연구를 통해 합성된 두 종류의 실리카 모노리스를 중간층으로 적용한 복층 창유리의 단열 성능을 측정된 모노리스의 열전도도와 이론식을 근거로 조사한 결과, 기존의 상업적으로 응용되는 공기층 삽입 복층 창유리에 비해 우수한 단열 성능을 보이는 것으로 나타났다.

Keywords

Acknowledgement

Supported by : 경기대학교

References

  1. H. S. Kim, S. K. Jeong, and S. H. Jeong, Experimental Research about Thermal insulation Performance of Various Powder Insulation Methods, J. Kor. Inst. Appl. Supercond. Cryog., 12, 49 (2010).
  2. J. E. Fesmire and S. D. Augustynowicz, Thermal Performance Testing of Glass Microspheres under Cryogenic Vacuum Conditions, Transactions of the Crygenic Engineering Conference, 49, 612 (2004).
  3. R. G. Baumgartner, E. A. Myers, J. E. Fesmire, D. L. Morries, and E. R. Sokalski, Demonstration of Microsphere Insulation in Cryogenic Vessels, Transactions of the Crygenic Engineering Conference, 51, 1351 (2006).
  4. N. Y. Kim, Y. W. Chang and S. W. Kim, Thermal Insulation Property of UV Cure Coatings Using Hollow Micro-Spheres, Korean Chem. Eng. Res., 50, 621 (2012). https://doi.org/10.9713/kcer.2012.50.4.621
  5. Y. W. Chang and S. W. Kim, UV curable transparent urethane-acrylate/clay nanocomposite coating materials with thermal barrier property, Surf. & Coat Technol. 232, 294 (2013).
  6. S. S. Kistler, Coherent Expanded Aerogels and Jellies, Nature, 127, 741 (1931).
  7. M. Schmidt and F. Schwertfeger, Application for silica aerogel products, J. Non-Cryst. Solids, 225, 364 (1998). https://doi.org/10.1016/S0022-3093(98)00054-4
  8. I. S. Han, J. C. Park, S. Y. Kim, K. S. Hong, and H. J. Hwang, Fabrication and Network Strengthening of Monolithic Silica Aerogels Using Water Glass, J. Kor. Ceram. Soc., 44, 162 (2007). https://doi.org/10.4191/KCERS.2007.44.3.162
  9. P. H. Tewart, A. J. Hunt, and K. D. Loffus, Mater. Lett., 3, 363 (1985). https://doi.org/10.1016/0167-577X(85)90077-1
  10. K. I. Jensen, J. M. Schultz, and F. H. Kristiansen, Development of windows based on highly insulating aerogel glazings, J. Non-Cryst. Solids, 350, 351 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.06.047
  11. S. D. Bhagat, C. S. Oh, Y. H. Kim, Y. S. Ahn, and H. G. Yeo, Methyltrimethoxysilane based monolithic silica aerogel via ambient pressure drying, Microporous and Mesoporous Meterials, 100, 350 (2007). https://doi.org/10.1016/j.micromeso.2006.10.026
  12. T. Y. Wei, T. F. Chang, and S. Y. Lu, Preparation of Monolithic Silica Aerogel of Low Thermal Conductivity by Ambient Pressure Drying, J. Am. Ceram. Soc., 90, 2003 (2007). https://doi.org/10.1111/j.1551-2916.2007.01671.x
  13. J. L. Gurav, D. Y. Nadargi, A. V. Rao, Effect of mixed Catalysts system on TEOS-based silica aerogels dried at ambient pressure, Appl. Surf. Sci, 255, 3019, (2008) https://doi.org/10.1016/j.apsusc.2008.08.059
  14. S. W. Ryu, S. S. Kim, and Y. J. Oh, Influence of solvent on the nano porous silica aerogels prepared by ambient drying process, J. Korean Sensors Society, 15, 371 (2006).