DOI QR코드

DOI QR Code

Polarization-Maintaining Photonic-Crystal-Fiber-based Polarimetric Strain Sensor with a Short Sensing Head

짧은 센서부를 가진 편광유지 광자결정 광섬유 기반 편광 간섭형 스트레인 센서

  • Noh, Tae Kyu (Department of Electrical Engineering, Pukyong National University) ;
  • Lee, Yong Wook (Department of Electrical Engineering, Pukyong National University)
  • 노태규 (부경대학교 전기공학과) ;
  • 이용욱 (부경대학교 전기공학과)
  • Received : 2013.11.20
  • Accepted : 2014.04.23
  • Published : 2014.06.25

Abstract

In this paper we have implemented a temperature-insensitive polarimetric fiber strain sensor based on a Sagnac birefringence interferometer composed of a short polarization-maintaining photonic crystal fiber (PM-PCF), a 3-dB fiber coupler, and polarization controllers. The PM-PCF used as a sensor head was 2 cm long, which is the shortest length for a sensing element compared to other polarimetric fiber strain sensors using a PM-PCF. The proposed sensor showed a strain sensitivity of ${\sim}0.87pm/{\mu}{\varepsilon}$ with a strain measurement range from 0 to $8m{\varepsilon}$. The temperature sensitivity was also investigated and measured as approximately $-12pm/^{\circ}C$, when ambient temperature changed from 30 to $100^{\circ}C$. This temperature sensitivity is about 82 times smaller than that of conventional polarization-maintaining fiber (approximately $-990pm/^{\circ}C$). In particular, from a practical perspective we have experimentally and theoretically confirmed that the wavelength selected for the indicator dip location does not make a significant difference in the strain sensitivity.

본 논문에서는 짧은 길이의 편광유지 광자결정 광섬유(polarization-maintaining photonic crystal fiber : 이하 PM-PCF)와 3 dB 광섬유 결합기(fiber coupler), 그리고 편광 조절기(polarization controller)로 구성된 사냑(Sagnac) 복굴절 간섭계(birefringence interferometer)를 이용하여 온도에 둔감한 편광 간섭형 스트레인 센서(polarimetric strain sensor)를 구현하였다. 센서부(sensor head)로 사용된 PM-PCF의 길이는 2 cm이었고, 이는 기존의 PM-PCF 기반 편광 간섭형 스트레인 센서들과 비교할 때 가장 짧은 센서부 길이이다. 제안된 센서는 $0{\sim}8m{\varepsilon}$의 범위에 대해서 스트레인 측정을 수행하였으며, ${\sim}0.87pm/{\mu}{\varepsilon}$에 해당하는 스트레인 민감도를 얻을 수 있었다. 또한, 외부 온도를 $30^{\circ}C$에서 $100^{\circ}C$까지 변화시키며 제안된 센서의 온도 의존성을 조사한 결과, 약 $-12pm/^{\circ}C$의 온도 민감도를 얻을 수 있었으며, 이는 기존의 편광 유지 광섬유의 온도 민감도(약 $-990pm/^{\circ}C$) 에 비해 약 82배정도 작은 값이다. 특히, 실용적인 관점에서 센서 표지자(indicator)로 사용되는 파장이 스트레인 민감도에 큰 영향을 주지 않는다는 것을 실험 및 이론적으로 확인하였다.

Keywords

References

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996). https://doi.org/10.1364/OL.21.001547
  2. J. C. Knight, "Photonic crystal fibres," Nature (London) 424, 847-851 (2003). https://doi.org/10.1038/nature01940
  3. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, "Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing," Appl. Phys. Lett. 91, 091109 (2007). https://doi.org/10.1063/1.2775326
  4. Q. Shi, F. Lv, Z. Wang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, "Environmentally stable Fabry-Perot-type strain sensor based on hollow-core photonic bandgap fiber," IEEE Photon. Technol. Lett. 20, 237-239 (2008). https://doi.org/10.1109/LPT.2007.913335
  5. W. Shin, Y. L. Lee, B.-A. Yu, Y.-C. Noh, and T. J. Ahn, "Highly sensitive strain and bending sensor based on in-line fiber Mach-Zehnder interferometer in solid core large mode area photonic crystal fiber," Opt. Commun. 283, 2097-2101 (2010). https://doi.org/10.1016/j.optcom.2010.01.008
  6. D.-H. Kim and J. U. Kang, "Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity," Opt. Express 12, 4490-4495 (2004). https://doi.org/10.1364/OPEX.12.004490
  7. X. Dong, H. Y. Tam, and P. Shum, "Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer," Appl. Phys. Lett. 90, 151113 (2007). https://doi.org/10.1063/1.2722058
  8. O. Frazao, J. M. Baptista, and J. L. Santos, "Temperatureindependent strain sensor based on a Hi-Bi photonic crystal fiber loop mirror," IEEE Sens. J. 7, 1451-1455 (2007).
  9. Y.-G. Han, "Temperature-insensitive strain measurement using a birefringent interferometer based on a polarizationmaintaining photonic crystal fiber," Appl. Phys. B 95, 383-387 (2009). https://doi.org/10.1007/s00340-008-3350-6
  10. T. K. Noh and Y. W. Lee, "Temperature-insensitive polarimetric fiber strain sensor with short polarization-maintaining photonic crystal fiber," Appl. Phys. Express 5, 112502 (2012). https://doi.org/10.1143/APEX.5.112502
  11. G. Rajan, M. Ramakrishnan, Y. Semenova, K. Milenko, P. Lesiak, A. W. Domanski, T. R. Wolinski, and G. Farrell, "A photonic crystal fiber and fiber Bragg grating-based hybrid fiber-optic sensor system," IEEE Sens. J. 12, 39-43 (2012). https://doi.org/10.1109/JSEN.2011.2114650
  12. L. M. Hu, C. C. Chan, X. Y. Dong, Y. P. Wang, P. Zu, W. C. Wong, W. W. Qian, and T. Li, "Photonic crystal fiber strain sensor based on modified Mach-Zehnder interferometer," IEEE Photonics J. 4, 114-118 (2012). https://doi.org/10.1109/JPHOT.2011.2180708
  13. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997). https://doi.org/10.1109/50.618377
  14. O. Frazao, J. P. Carvalho, L. A. Ferreira, F. M. Araujo, and J. L. Santos, "Discrimination of strain and temperature using Bragg gratings in microstructured and standard optical fibres," Meas. Sci. Technol. 16, 2109-2113 (2005). https://doi.org/10.1088/0957-0233/16/10/028
  15. C. Martelli, J. Canning, N. Groothoff, and K. Lyytikainen, "Strain and temperature characterization of photonic crystal fiber Bragg gratings," Opt. Lett. 30, 1785-1787 (2005). https://doi.org/10.1364/OL.30.001785
  16. J. S. Ahn, K. N. Park, G. H. Kim, S. B. Lee, and K. S. Lee, "Low loss fusion splicing of photonic crystal fiber and single-mode fiber," Journal of the Institute of Electronics of Engineers of Korea-SD 46, 529-535 (2009).
  17. D. Choi and Y. W. Lee, "Current-controlled tunable fiber multiwavelength filter based on polarization-diversity loop structure," Jpn. J. Appl. Phys. 50, 062502 (2011). https://doi.org/10.7567/JJAP.50.062502
  18. E. De la Rosa, L. A. Zenteno, A. N. Starodumov, and D. Monzon, "All-fiber absolute temperature sensor using an unbalanced high-birefringence Sagnac loop," Opt. Lett. 22, 481-483 (1997). https://doi.org/10.1364/OL.22.000481
  19. D.-H. Kim and J. U. Kang, "Analysis of temperaturedependent birefringence of a polarization-maintaining photonic crystal fiber," Opt. Eng. 46, 075003 (2007). https://doi.org/10.1117/1.2752177