DOI QR코드

DOI QR Code

Nucleus-phonon interactions of MCsSO4 (M = Na, K, or Rb) single crystals studied using spin-lattice relaxation time

  • Choi, Jae Hun (Department of Carbon Fusion Engineering, Jeonju University) ;
  • Kim, Nam Hee (Department of Carbon Fusion Engineering, Jeonju University) ;
  • Lim, Ae Ran (Department of Carbon Fusion Engineering, Jeonju University)
  • Received : 2014.04.10
  • Accepted : 2014.06.10
  • Published : 2014.06.20

Abstract

The structural properties and relaxation processes of $MCsSO_4$ (M = Na, K, or Rb) crystals were investigated by measuring the NMR spectra and spin-lattice relaxation rates $1/T_1$ of their $^{23}Na$, $^{39}K$, $^{87}Rb$, and $^{133}Cs$ nuclei. According to the NMR spectra, the $MCsSO_4$ crystals contain two crystallographically inequivalent sites each for the M and Cs ions. Further, the relaxation rates of all these nuclei do not change significantly over the investigated temperature range, indicating that no phase transitions occur in these crystals in this range. The variations in the $1/T_1$ values of the $^{23}Na$, $^{39}K$, $^{87}Rb$, and $^{133}Cs$ nuclei in these three crystals with increasing temperature are approximately proportional to $T^2$, indicating that Raman processes may be responsible for the relaxation. Therefore, for nuclear quadrupole relaxation of the $^{23}Na$, $^{39}K$, $^{87}Rb$, and $^{133}Cs$ nuclei, Raman processes with n = 2 are more effective than direct processes.

Keywords

References

  1. H.I. Abd El-Kader, Qatar Univ. Sci. J. 14(c), 100 (1994).
  2. S.M. Haile, D.A. Boysen, C.R.I. Chisholm, R.B. Merle, Nature 410, 910 (2001). https://doi.org/10.1038/35073536
  3. H. Kamimura, S. Watanabe, Philos. Mag. B81, 1011 (2001).
  4. Y. Matsuo, K. Takahashi, S. Ikehata, J. Phys. Soc. Jpn. 70, 2934 (2001). https://doi.org/10.1143/JPSJ.70.2934
  5. T. Norby, Nature 410, 877 (2001) https://doi.org/10.1038/35073718
  6. Y. Matsuo, K. Takahashi, S. Ikehata, Solid State Commun. 120, 85 (2001). https://doi.org/10.1016/S0038-1098(01)00339-8
  7. Y. Matsuo, K. Takahashi, S. Ikehata, Ferroelectrics 272, 199 (2002). https://doi.org/10.1080/00150190211575
  8. H. Kamimura, Y. Matsuo, S. Ikehata, T. Ito, M. Komukae, T. Osaka, Phys. Status Solidi B 241, 61 (2004). https://doi.org/10.1002/pssb.200303624
  9. B. Mroz, T. Krajewsk, T. Breczewski, W. Chomka, D. Semotowicz, Ferroelectrics 42, 459 (1982).
  10. T. Krajewski, T. Breczewski, M. Kassem, B. Mroz, Ferroelectrics 55, 811 (1984).
  11. M.E. Kassem, S.H. Kandil, E.F. El-Wahidy, M. El-Gamal, Rev. Phys. Appl. 19, 445 (1984). https://doi.org/10.1051/rphysap:01984001906044500
  12. M.E. Kassem, S. Hedewy, J. Mat. Sci. Lett. 7, 1007 (1988). https://doi.org/10.1007/BF00720759
  13. K.S. Aleksandrov, I.L. Zherebtsova, I.M. Iskornev, A.I. Kruglik, O.V. Rozanor, I.N. Flerov, Sov. Phys. Solid State 22, 215 (1980).
  14. H. Mashiyama, K. Hasebe, S. Tanisaki, Y. Shiroishi, S. Sawada, J. Phys. Soc. Japan 47, 1198 (1979). https://doi.org/10.1143/JPSJ.47.1198
  15. B. Kihal, C. Dugautier, R. Farhi, P. Moch, J. Phys. C 20, 4491 (1987). https://doi.org/10.1088/0022-3719/20/28/014
  16. T. Mitsui, T. Oka, Y. Shiroishi, M. Takashige, K. Lio, S. Swada, J. Phys. Soc. Japan 39, 845 (1975) https://doi.org/10.1143/JPSJ.39.845
  17. M.E. Hiues, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials. Clarendon Press, Oxford.
  18. M.E. Kassem, A.M. El-Katib, E.F. El-Wahidy, H.E. Gado, J. Mat. Sci. Lett. 6, 507 (1987). https://doi.org/10.1007/BF01739268
  19. H.P. Beerman, Ferroelectrics 2, 123 (1977).
  20. M. Igarashi, H. Kitagawa, S. Takahashi, R. Yoshizak, Y. Abe, Z. Naturforsch. 47a, 313 (1992).
  21. J.J. Van der Klink, D. Rytz, F. Borsa, U.T. Hochi, Phys. Rev. B 27, 89 (1983). https://doi.org/10.1103/PhysRevB.27.89
  22. A. Avogadro, E. Cavelius, D. Muller, J. Petersson, Phys. Status Solidi B 44, 639 (1971). https://doi.org/10.1002/pssb.2220440222
  23. E.R. Andrew, D.P. Tunstall, Proc. Phys. Soc. (London) 78, 1 (1961). https://doi.org/10.1088/0370-1328/78/1/302
  24. D.P. Tewari, G.S. Verma, Phys. Rev. 129, 1975 (1963). https://doi.org/10.1103/PhysRev.129.1975
  25. M.A. Gordon, M.J.R. Hoch, J. Phys. C: Solid State Phys. 11, 783 (1978). https://doi.org/10.1088/0022-3719/11/4/023
  26. A, Abragam, The Principles of Nuclear Magnetism, Oxford University Press, Oxford (1961).
  27. A.R. Lim, I.H. Choi, J.-H. Chang, Phys. Status Solidi B 246, 2372 (2009).
  28. H.J. Kim, D.Y. Jeong, B. Zalar, R. Blinc, S.H. Choh, Phys. Rev. B 61, 9307 (2000). https://doi.org/10.1103/PhysRevB.61.9307
  29. R. Bohmer, K.R. Jeffrey, M. Vogel, Prog. Nucl. Magn. Reson. Spectrosc. 50, 87 (2007). https://doi.org/10.1016/j.pnmrs.2006.12.001
  30. A.R. Lim, J. Appl. Phys. 106, 93522 (2009). https://doi.org/10.1063/1.3255958
  31. J. Van Kranendonk, M.B. Walker, Phys. Rev. Lett. 18, 701 (1967). https://doi.org/10.1103/PhysRevLett.18.701
  32. J. Van Kranendonk, Physica B 20, 781 (1954).
  33. J. Van Kranendonk, Can. J. Phys. 46, 2441 (1968). https://doi.org/10.1139/p68-604