DOI QR코드

DOI QR Code

Genetic Traceability of Black Pig Meats Using Microsatellite Markers

  • Oh, Jae-Don (Genomic Informatics Center, Hankyong National University) ;
  • Song, Ki-Duk (Genomic Informatics Center, Hankyong National University) ;
  • Seo, Joo-Hee (Genomic Informatics Center, Hankyong National University) ;
  • Kim, Duk-Kyung (Genomic Informatics Center, Hankyong National University) ;
  • Kim, Sung-Hoon (Genomic Informatics Center, Hankyong National University) ;
  • Seo, Kang-Seok (Department of Animal Science and Technology, Sunchon National University) ;
  • Lim, Hyun-Tae (Institute of Agriculture and Life Sciences, Gyeongsang National University) ;
  • Lee, Jae-Bong (Institute of Agriculture and Life Sciences, Gyeongsang National University) ;
  • Park, Hwa-Chun (Dasan Pig Breeding Co.) ;
  • Ryu, Youn-Chul (Major of Animal Science and Biotechnology, Jeju National University) ;
  • Kang, Min-Soo (Major of Animal Science and Biotechnology, Jeju National University) ;
  • Cho, Seoae (C&K Genomics) ;
  • Kim, Eui-Soo (Genomic Informatics Center, Hankyong National University) ;
  • Choe, Ho-Sung (Department of Animal Biotechnology, Chonbuk National University) ;
  • Kong, Hong-Sik (Genomic Informatics Center, Hankyong National University) ;
  • Lee, Hak-Kyo (Genomic Informatics Center, Hankyong National University)
  • Received : 2013.12.16
  • Accepted : 2014.04.10
  • Published : 2014.07.01

Abstract

Pork from Jeju black pig (population J) and Berkshire (population B) has a unique market share in Korea because of their high meat quality. Due to the high demand of this pork, traceability of the pork to its origin is becoming an important part of the consumer demand. To examine the feasibility of such a system, we aim to provide basic genetic information of the two black pig populations and assess the possibility of genetically distinguishing between the two breeds. Muscle samples were collected from slaughter houses in Jeju Island and Namwon, Chonbuk province, Korea, for populations J and B, respectively. In total 800 Jeju black pigs and 351 Berkshires were genotyped at thirteen microsatellite (MS) markers. Analyses on the genetic diversity of the two populations were carried out in the programs MS toolkit and FSTAT. The population structure of the two breeds was determined by a Bayesian clustering method implemented in structure and by a phylogenetic analysis in Phylip. Population J exhibited higher mean number of alleles, expected heterozygosity and observed heterozygosity value, and polymorphism information content, compared to population B. The $F_{IS}$ values of population J and population B were 0.03 and -0.005, respectively, indicating that little or no inbreeding has occurred. In addition, genetic structure analysis revealed the possibility of gene flow from population B to population J. The expected probability of identify value of the 13 MS markers was $9.87{\times}10^{-14}$ in population J, $3.17{\times}10^{-9}$ in population B, and $1.03{\times}10^{-12}$ in the two populations. The results of this study are useful in distinguishing between the two black pig breeds and can be used as a foundation for further development of DNA markers.

Keywords

References

  1. Alves, E., A. I. Fernandez, A. Fernandez-Rodriguez, D. Perez-Montarelo, R. Benitez, C. Ovilo, C. Rodriguez, and L. Silio. 2009. Identification of mitochondrial markers for genetic traceability of European wild boars and Iberian and Duroc pigs. Animal 3:1216-1223. https://doi.org/10.1017/S1751731109004819
  2. Ayres, K. L. and A. D. J. Overall. 2004. API-CALC 1.0: a computer program for calculating the average probability of identity allowing for substructure, inbreeding and the presence of close relatives. Mol. Ecol. Notes. 4:315-318. https://doi.org/10.1111/j.1471-8286.2004.00616.x
  3. Botstein, D., R. L. White, M. Skolnik, and R. W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32:314-331.
  4. Cameron, N. D. 1990. Genetic and phenotypic parameters for carcass traits, meat and eating quality traits in pigs. Livest. Prod. Sci. 26:119-135. https://doi.org/10.1016/0301-6226(90)90061-A
  5. Cliplef, R. L. and R. M. McKay. 1993. Carcass quality characteristics of swine selected for reduced backfat thickness and increased growth rate. Can. J. Anim. Sci. 73:483-494. https://doi.org/10.4141/cjas93-053
  6. Dalvit, C., M. De Marchi, and M. Cassandro. 2007. Genetic traceability of livestock products: A review. Meat Sci. 77:437-449. https://doi.org/10.1016/j.meatsci.2007.05.027
  7. Dalvit, C., M. De Marchi, C. Targhetta, M. Geravaso, and M. Cassandro. 2008. Genetic traceability of meat using microsatellite markers. Food Res. Int. 41:301-307. https://doi.org/10.1016/j.foodres.2007.12.010
  8. Felsenstein, J. 2007. PHYLIP - Phylogeny Inference Package. Version 3.67. Department of Genetics, University of Washington, Seattle.
  9. Goffaux, F., B. China, L. Dams, A. Clinquart, and G. Daube. 2005. Development of a genetic traceability test in pig based on single nucleotide polymorphism detection. Forensic Sci. Int. 151:239-247. https://doi.org/10.1016/j.forsciint.2005.02.013
  10. Goudet, J. 2001. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www.unil.ch/izea/softwares/fstat.html. Accessed February 6, 2005.
  11. Kim, M. J., G. H. Li, J. D. Oh, K. H. Cho, G. J. Jeon, B. H. Choi, J. H. Lee, Y. S. Hong, H. S. Kong, and H. K. Lee. 2007. Characterization of a Korean traditional porcine breed using microsatellite markers and the establishment of an individual identification system. Korean J. Food Sci. Anim. Resour. 27:150-156. https://doi.org/10.5851/kosfa.2007.27.2.150
  12. Kim, T. H., K. S. Kim, B. H. Choi, D. H. Yoon, G. W. Jang, K. T. Lee, H. Y. Chung, H. Y. Lee, H. S. Park, and J. W. Lee. 2005. Genetic structure of pig breeds from Korea and China using microsatellite loci analysis. J. Anim. Sci. 83:2255-2263.
  13. Lee, Y. H., S. G. Kwon, D. H. Park. E. J. Kwon, E. S. Cho, W. Y. Bang, H. C. Park, B. Y. Park, J. S. Choi, and C. W. Kim. 2011. Development of high meat quality using microsatellite markers in Berkshire pigs. J. Anim. Sci. Technol. 53:89-97. https://doi.org/10.5187/JAST.2011.53.2.89
  14. Lim, H. T., H. S. Min, W. G. Moon, J. B. Lee, J. H. Kim, I. C. Cho, H. K. Lee, Y. W. Lee, J. G. Lee, and J. T. Jeon. 2005. Analysis and selection of microsatellites markers for individual traceability system in hanwoo. J. Anim. Sci. Technol. 47:491-500. https://doi.org/10.5187/JAST.2005.47.4.491
  15. Lim, H. T., B. Y. Seo, E. J. Jung, C. K. Yoo, T. Zhong, I. C. Cho, D. H. Yoon, J. G. Lee, and J. T. Jeon. 2009. Establishment of a microsatellite marker set for individual, pork brand and product origin identification in pigs. J. Anim. Sci. Technol. 51:201-206. https://doi.org/10.5187/JAST.2009.51.3.201
  16. Miller, S. A., D. D. Dykes, and H. F. Polesky. 1988. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16:1215. https://doi.org/10.1093/nar/16.3.1215
  17. Moon, Y. H. 2004. Physicochemical properties and palatability of Loin from crossbred Jeju Black pigs. Korean J. Food Sci. Anim. Resour. 24:238-245.
  18. Negrini, R., L. Nicoloso, P. Crepaldi, E. Milanesi, R. Marino, D. Perini, L. Pariset, S. Dunner, H. Leveziel, J. L. Williams, and M. P. Ajmone. 2008. Traceability of four European protected geographic indication (PGI) beef products using single nucleotide polymorphisms (SNP) and Bayesian statistics. Meat Sci. 80:1212-1217. https://doi.org/10.1016/j.meatsci.2008.05.021
  19. Nei, M., F. Tajima, and Y. Tateno. 1983. Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol. 19:153-170. https://doi.org/10.1007/BF02300753
  20. Park, S. 2000. Microsatellite Toolkit For MS Excel 97 or 2000 (personnel communication).
  21. Pritchard, J. K., M. Stephens, and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155:945-959.
  22. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  23. Shim, J. M., D. W. Seo, S. Seo, J. J. Kim, D. M. Min, J. K. Kim, J. T. Jeon, and J. H. Lee. 2010. Discrimination of Korean cattle (Hanwoo) with imported beef from USA based on the SNP markers. Korean J. Food Sci. Anim. Resour. 30:918-922. https://doi.org/10.5851/kosfa.2010.30.6.918
  24. Song, J. Y. 2010. Comparative Analysis of Meat Quality According to Pig Breed and Carcass Chilling Rate in Jeju Pork. MS Thesis, Jeju University, JeJu, Korea.
  25. Suzuki, K., T. Shibata, H. Kadowaki, H. Abe, and T. Toyoshima. 2003. Meat quality comparison of Berkshire, Duroc and crossbred pigs sired by Berkshire and Duroc. Meat Sci. 64:35-42. https://doi.org/10.1016/S0309-1740(02)00134-1
  26. Wright, S. 1965. The interpretation of population structure by fstatistics with special regard to systems of mating. Evolution 19:395-420. https://doi.org/10.2307/2406450

Cited by

  1. Effect of a c-MYC Gene Polymorphism (g.3350G>C) on Meat Quality Traits in Berkshire vol.28, pp.11, 2015, https://doi.org/10.5713/ajas.15.0425
  2. STR Profiling for Discrimination between Wild and Domestic Swine Specimens and between Main Breeds of Domestic Pigs Reared in Belarus vol.11, pp.11, 2016, https://doi.org/10.1371/journal.pone.0166563
  3. Genetic diversity of autochthonous pig breeds analyzed by microsatellite markers and mitochondrial DNA D-loop sequence polymorphism pp.1532-2378, 2018, https://doi.org/10.1080/10495398.2018.1478847
  4. Genome-wide scans for detecting the selection signature of the Jeju-island native pig in Korea vol.33, pp.4, 2014, https://doi.org/10.5713/ajas.19.0026
  5. Identification of Target Chicken Populations by Machine Learning Models Using the Minimum Number of SNPs vol.11, pp.1, 2014, https://doi.org/10.3390/ani11010241
  6. Microsatellite DNA Analysis for Diversity Study, Individual Identification and Parentage Control in Pig Breeds in Poland vol.12, pp.4, 2014, https://doi.org/10.3390/genes12040595
  7. Breed identification of meat using machine learning and breed tag SNPs vol.125, pp.None, 2014, https://doi.org/10.1016/j.foodcont.2021.107971