DOI QR코드

DOI QR Code

Fermentation Characteristics, Tannin Contents and In vitro Ruminal Degradation of Green Tea and Black Tea By-products Ensiled at Different Temperatures

  • Received : 2013.07.04
  • Accepted : 2014.03.26
  • Published : 2014.07.01

Abstract

Green and black tea by-products, obtained from ready-made tea industry, were ensiled at $10^{\circ}C$, $20^{\circ}C$, and $30^{\circ}C$. Green tea by-product silage (GTS) and black tea by-product silage (BTS) were opened at 5, 10, 45 days after ensiling. Fermentation characteristics and nutrient composition, including tannins, were monitored and the silages on day 45 were subjected to in vitro ruminal fermentation to assess anti-nutritive effects of tannins using polyethylene glycol (PEG) as a tannin-binding agent. Results showed that the GTS and BTS silages were stable and fermented slightly when ensiled at $10^{\circ}C$. The GTS stored at $20^{\circ}C$ and $30^{\circ}C$ showed rapid pH decline and high acetic acid concentration. The BTS was fermented gradually with moderate change of pH and acid concentration. Acetic acid was the main acid product of fermentation in both GTS and BTS. The contents of total extractable phenolics and total extractable tannins in both silages were unaffected by storage temperatures, but condensed tannins in GTS were less when stored at high temperature. The GTS showed no PEG response on in vitro gas production, and revealed only a small increase by PEG on $NH_3$-N concentration. Storage temperature of GTS did not affect the extent of PEG response to both gas production and $NH_3$-N concentration. On the other hand, addition of PEG on BTS markedly increased both the gas production and $NH_3$-N concentration at any ensiled temperature. It can be concluded that tannins in both GTS and BTS suppressed rumen fermentation, and tannins in GTS did more weakly than that in BTS. Ensiling temperature for both tea by-products did not affect the tannin's activity in the rumen.

Keywords

References

  1. Albrecht, K. A. and R. E. Muck. 1991. Proteolysis in ensiled forage legumes that vary in tannin concentration. Crop. Sci. 31:464-469. https://doi.org/10.2135/cropsci1991.0011183X003100020048x
  2. Barnett, A. J. G. 1951. The colorimetric determination of lactic acid in silage. Biochem. J. 49:527-529.
  3. Bhatta, R., M. Saravanan, B, Luna, and K. T. Sampath. 2012. Phenolic composition, fermentation profile, protozoa population and methane production from sheanut (Butryospermum Parkii) byproducts in vitro. Asian Australas. J. Anim. Sci. 25:1389-1394. https://doi.org/10.5713/ajas.2012.12229
  4. Getachew, G., H. P. S. Makkar, and K. Becker. 2000. Effect of polyethylene glycol on in vitro degradability of nitrogen and microbial protein synthesis from tannin-rich browse and herbaceous legumes. Br. J. Nutr. 84:73-83.
  5. Graham, H. N. 1992. Green tea composition, consumption, and polyphenol chemistry. Prev. Med. 21:334-350. https://doi.org/10.1016/0091-7435(92)90041-F
  6. Hymes-Fecht, U. C., G. A. Broderick, R. E. Muck, and J. H. Grabber. 2013. Replacing alfalfa or red clover silage with birdsfoot trefoil silage in total mixed rations increases production of lactating dairy cows. J. Dairy Sci. 96:460-469. https://doi.org/10.3168/jds.2012-5724
  7. Ishihara, N., D. C. Chu, S. Akashi, and L. R. Juneja. 2001. Improvement of intestinal microflora balance and prevention of digestive and respiratory organ diseases in calves by green tea extracts. Livest. Prod. Sci. 68:217-229. https://doi.org/10.1016/S0301-6226(00)00233-5
  8. Jones, D. E. 1965. Banana tannin and its reaction with polyethylene glycols. Nature 206:299-300. https://doi.org/10.1038/206299a0
  9. Khetarpaul, N. and B. M. Chauhan. 1991. Effect of natural fermentaion on phytate and polyphenol content and in vitro digestibility of starch and protein of pearl millet (Pennisetum typhoideum). J. Sci. Food Agric. 55:189-195. https://doi.org/10.1002/jsfa.2740550204
  10. Koehler, L. H. 1952. Differentiation of carbohydrates by anthrone reaction rate and color intensity. Anal. Chem. 24:1576-1579. https://doi.org/10.1021/ac60070a014
  11. Kondo, M., K. Kita, and H. Yokota. 2004a. Effects of tea leaf waste of green tea, oolong tea, and black tea addition on sudangrass silage quality and in vitro gas production. J. Sci. Food Agric. 84:721-727. https://doi.org/10.1002/jsfa.1718
  12. Kondo, M., K. Kita, and H. Yokota. 2004b. Feeding value to goats of whole-crop oat ensiled with green tea waste. Anim. Feed Sci. Technol. 113:71-81. https://doi.org/10.1016/j.anifeedsci.2003.10.018
  13. Kondo, M., K. Kita, and H. Yokota. 2006. Evaluation of fermentation characteristics and nutritive value of green tea waste ensiled with byproducts mixture for ruminants. Asian Australas. J. Anim. Sci. 19:533-540. https://doi.org/10.5713/ajas.2006.533
  14. Kozloski, G. V., C. J. Harter, F. Hentz, S. C. de Avilar, T. Orlandi, and C. M. Stefanello. 2012. Intake, digestibility and nutrients supply to wethers fed ryegrass and intraruminally infused with levels of Acacia mearnsii tannin extract. Small Rumin. Res. 106:125-130. https://doi.org/10.1016/j.smallrumres.2012.06.005
  15. Licitra, G., T. M. Hernandez, and P. J. Van Soest. 1996. Standarization of procedures for nitrogen fractionation of ruminant feed. Anim. Feed Sci. Technol. 57:347-358. https://doi.org/10.1016/0377-8401(95)00837-3
  16. Makkar, H. P. S., M. Blummel, and K. Becker. 1995. Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and tannins, and their implication in gas production and true digestibility in in vitro techniques. Br. J. Nutr. 73:897-913. https://doi.org/10.1079/BJN19950095
  17. Makkar, H. P. S. and A. V. Goodchild. 1996. Quantification of Tannins: A Laboratory Manual. ICARDA, Aleppo, Syria.
  18. McDonald, P., A. R. Henderson, and S. J. Heron. 1991. The Biochemistry of Silage, 2nd Edn. Chalcombe Publications, Aberystwyth, UK. pp. 31-32.
  19. Menke, K. H. and H. Stengass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Develop. 28:7-55.
  20. Mokhtarpour, A., A. Naserian, A. M. Tahmasbi, and R. Valizadeh. 2012. Effect of feeding pistachio by-products silage supplemented with polyethylene glycol and urea on Holstein dairy cows performance in early lactation. Livest. Sci. 148: 208-213. https://doi.org/10.1016/j.livsci.2012.06.006
  21. Nishino, N., H. Harada, and E. Sakaguchi. 2003. Evaluation of fermentation and aerobic stability of wet brewers's grains ensiled alone or in combination with various feeds as a total mixed ration. J. Sci. Food Agric. 83:557-563. https://doi.org/10.1002/jsfa.1395
  22. Nishino, N., T. Kawai, and M. Kondo. 2007. Changes during ensilage in fermentation products, tea catechins, antioxidative activity and in vitro gas production of green tea waste stored with or without dried beet pulp. J. Sci. Food Agric. 87:1639-1644. https://doi.org/10.1002/jsfa.2842
  23. Oh, H., I., J. E. Hoff, G. S. Armstrong, and L. A. Haff. 1980. Hydrophobic interaction in tannin-protein complexes. J. Agric. Food Chem. 28:394-398. https://doi.org/10.1021/jf60228a020
  24. Osawa, R., K. Kuroiso, S. Goto, and A. Shimizu. 2000. Isolation of tannin-degrading lactobacilli from humans and fermented foods. Appl. Environ. Microbiol. 66:3093-3097. https://doi.org/10.1128/AEM.66.7.3093-3097.2000
  25. Osuga, I. M., S. A. Abdulrazak1, T. Ichinohe, and T. Fujihara. 2005. Chemical composition, degradation characteristics and effect of tannin on digestibility of some browse species from Kenya harvested during the wet season. Asian Australas. J. Anim. Sci. 18:54-60. https://doi.org/10.5713/ajas.2005.54
  26. Osuga, I. M., C. N. Maindi, S. A. Abdulrazak, N. Nishino, T. Ichinohe, and T. Fujihara. 2007. Potential nutritive value and tannin bioassay of selected Acacia species from Kenya. J. Sci. Food. Agric. 87:1533-1538. https://doi.org/10.1002/jsfa.2883
  27. Ott, E. M., M. Aragon, and M. Gabel. 2005. Ensiling of tannincontaining sorghum grain. Silage production and utilisation. Prceedings of the XIVth International Silage Conference. pp. 178.
  28. Pathak, A. K., N. Dutta, P. S. Banerjee, A. K. Patthanaik, and K. Sharma. 2013. Influence of dietary supplementation of condensed tannins through leaf meal mixture on intake, nutrient utilization and performance of Haemonchus contortus infected sheep. Asian Australas. J. Anim. Sci. 26:1446-1458. https://doi.org/10.5713/ajas.2013.13066
  29. Playne, M. J. and P. McDonald. 1966. The buffering constituents of herbage and of silage. J. Sci. Food Agric. 17:264-268. https://doi.org/10.1002/jsfa.2740170609
  30. Perez-Maldonado, R. A., B. W. Norton, and G. L. Kerven. 1995. Factors affecting in vitro formation of tannin-protein complexes. J. Sci. Food Agric. 69:291-298. https://doi.org/10.1002/jsfa.2740690305
  31. Ramdani, D., A. S. Chaudhry, and C. J. Seal. 2013. Chemical composition, plant secondary metabolites, and minerals of green and black teas and the effect of different tea-to-water ratios during their extraction on the composition of their spent leaves as potential additives for ruminants. J. Agric. Food Chem. 61:4961-4967. https://doi.org/10.1021/jf4002439
  32. Rubanza, C. D. K., M. N. Shem, R. Otsyina, N. Nishino, T. Ichinohe, and T. Fujihara. 2003. Content of phenolics and tannins in leaves and pods of some Acacia and Dichrostachys species and effects on in vitro digestibility. J. Anim. Feed Sci. 12:645-663.
  33. Salawu, M. B., T. Acamovic, C. S. Stewart, T. Hvelplund, and M. R. Weisbjerg. 1999. The use of tannins as silage additives: Effects on silage composition and mobile bag disappearance of dry matter and protein. Anim. Feed Sci. Technol. 82:243-259. https://doi.org/10.1016/S0377-8401(99)00105-4
  34. Singh, B., A. Sahoo, R. Sharma, and T. K. Bhat. 2005. Effect of polethylene glycol on gas production parameters and nitrogen disappearance of some tree forages. Anim. Feed Sci. Technol. 123-124: 351-364. https://doi.org/10.1016/j.anifeedsci.2005.04.033
  35. Tan, H. Y., C. C. Sieo, N. Abdullah, J. B. Liang, X. D. Huang, and Y. W. Ho. 2011. Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim. Feed Sci. Technol. 169:185-193. https://doi.org/10.1016/j.anifeedsci.2011.07.004
  36. Van Soest, P. J., J. D. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  37. Waghorn, G. C. 2008. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production-Progress and challenges. Anim. Feed Sci. Technol. 147:116-139. https://doi.org/10.1016/j.anifeedsci.2007.09.013
  38. Wang, R. R., H. L. Wang, X. Liu, and C. C. Xu. 2011. Effects of different additives on fermentation characteristics and protein degradation of green tea grounds silage. Asian Australas. J. Anim. Sci. 24:616-622. https://doi.org/10.5713/ajas.2011.10346
  39. Weatherburn, M. W. 1967. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 39:971-974. https://doi.org/10.1021/ac60252a045

Cited by

  1. Assessment of Anti-nutritive Activity of Tannins in Tea By-products Based on In vitro Rumen Fermentation vol.27, pp.11, 2014, https://doi.org/10.5713/ajas.2014.14204
  2. Fermentation Characteristics and Microbial Diversity of Tropical Grass-legumes Silages vol.28, pp.4, 2015, https://doi.org/10.5713/ajas.14.0622
  3. gas production characteristics, ruminal degradability and post-ruminal digestibility assessed with inhibitory activity of their tannins pp.13443941, 2018, https://doi.org/10.1111/asj.13106
  4. The effect of paddy straw and concentrate containing green tea dust on performance and nutrient digestibility in feedlot lambs vol.44, pp.3, 2014, https://doi.org/10.3906/vet-1909-10
  5. Effect of ensiling persimmon peel and grape pomace as tannin‐rich byproduct feeds on their chemical composition and in vitro rumen fermentation vol.92, pp.1, 2014, https://doi.org/10.1111/asj.13524