DOI QR코드

DOI QR Code

A Novel Method for Material Rendering and Real Measurement of Thickness Using Ultrasound

초음파를 이용한 실측 두께 측정과 재질 렌더링

  • 최태영 (성결대학교 멀티미디어공학부) ;
  • 진성아 (성결대학교 멀티미디어공학부)
  • Received : 2014.05.09
  • Accepted : 2014.05.27
  • Published : 2014.06.25

Abstract

In this paper, we present a method for optical parameter-based material rendering with measuring the thickness of a material using ultrasonic waves. Thickness is an important element in determining the reflectance and transmittance of a material along with its optical characteristics and plays a crucial role in more realistic object rendering. In studies conducted thus far, thickness has been measured and used for rendering. The proposed method is a novel method attempted for the first time ever to render a material considering the thickness of a material whose thickness cannot be measured by visual assessment, using ultrasonic waves. It was implemented by measuring the sound velocity of the reference sample and applying the results to the thickness measurement of other objects that have the same characteristics. The characteristics of the objects measured are reflected in the quality of the final rendering, thus verifying the importance of thickness in rendering.

본 논문에서는 초음파를 이용하여 재질의 두께를 실측하고 렌더링하는 방법을 제안한다. 두께는 광학특성과 함께 반사율과 투과율을 결정하는데 중요한 요소로서 물체를 더욱 사실적으로 표현하는데 영향을 준다. 지금까지의 연구는 두께를 추정하여 렌더링에 사용해왔다. 제안된 방법은 육안으로 두께를 측정할 수 없는 물체의 두께를 초음파를 이용하여 측정하여 렌더링하는 처음 시도된 방법이다. 이를 위해 기준시편의 음속을 측정하고, 같은 성질을 갖는 다른 물체들의 두께를 측정한다. 측정된 물체의 특성들은 최종적으로 렌더링되고, 영상 분석 모델을 통해 결과를 확인하며, 이를 통해 렌더링에서 두께의 중요성을 확인할 수 있다.

Keywords

References

  1. Y. Gotanda, "Beyond a Simple Physically Based Blinn-Phong Model in Real-Time," SIGGRAPH 2012 course, 2012.
  2. H.W. Jensen, S.R. Marschnerm N. Levoy, and P. Hanrahan, "A Practical Model for Subsurface Light Transport," ACM Transactions on Graphics, pp. 511-518, 2001.
  3. A. Ghosh, W. Heidrich, S. Achutha, and M. O'Toole, "A Basis Illumination Approach to BRDF Measurement," International Journal of Computer Vision, Vol. 90, pp. 183-197, 2010. https://doi.org/10.1007/s11263-008-0151-7
  4. C. Donner, and H.W. Jensen, "Light Diffusion in Multi-Layered Translucent Materials," ACM Transactions on Graphics, pp. 1032-1039, 2005.
  5. D.B. Kim, and K.H. Lee, "Computer-aided appearance design based on BRDF measurements," Computer-Aided Design, Vol. 43, No. 9, pp. 1181-1193, 2011. https://doi.org/10.1016/j.cad.2011.04.015
  6. G.I. Petrov, A. Doronin, H. T. Whelan, I. Meglinski, and V.V. Yakovlev, "Human Tissue Color as Viewed in High Dynamic Range Optical Spectral Transmission Measurements, " Biomedical Optics Express, Vol. 3, No. 9, pp. 2154-2161, 2012. https://doi.org/10.1364/BOE.3.002154
  7. D.G. Aggelis, E. Leonidou, and T.E. Matikas, "Subsurface crack determination by one-sided ultrasonic measurements," Cement & Concrete Composites, Vol. 34, pp. 140-146, 2012. https://doi.org/10.1016/j.cemconcomp.2011.09.017
  8. K.A. Wear, T.A. Stiles et al, "Interlaboratory Comparison of Ultrasonic Backscatter Coefficient Measurements From 2 to 9 MHz," J Ultrasound Med, Vol. 24, pp. 1235-1250, 2005. https://doi.org/10.7863/jum.2005.24.9.1235
  9. Q. Huynh-Thu, M. Ghanbari, "Scope of validity of PSNR in image/video quality assessment," Electronics Letters, Vol. 44, No. 13, 2008.
  10. T.Q. Aydin, R.Mantiuk, K. Myszkowski, and H.P. Seidel, "Dynamic Range Independent Image Quality Assessment," ACM Transactions on Graphics, Vol. 27, No. 3, 2008.
  11. T. Choi, S. Lee and S. Chin, "A method of combining the spectrophotometer and optical imaging equipment to extract optical parameters for material rendering," Journal of Sensors, review, 2014.
  12. R.A.J. Groenhuis, H.A. Ferwerda and J.J.T. Bosch, "Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory," Applied Optics, Vol. 22, No. 16, pp. 2456-2462, 1983. https://doi.org/10.1364/AO.22.002456
  13. B. Walter, "Notes on the Ward BRDF," Technical Report PCG-05-06 Cornell Program of Computer Graphics, 2005.