DOI QR코드

DOI QR Code

Salicortin suppresses lipopolysaccharide-stimulated inflammatory responses via blockade of NF-κB and JNK activation in RAW 264.7 macrophages

  • Kwon, Dong-Joo (Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University) ;
  • Bae, Young-Soo (Department of Forest Biomaterials Engineering, Kangwon National University) ;
  • Ju, Sung Mi (Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University) ;
  • Youn, Gi Soo (Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University) ;
  • Choi, Soo Young (Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University) ;
  • Park, Jinseu (Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University)
  • Received : 2013.09.03
  • Accepted : 2013.09.09
  • Published : 2014.06.30

Abstract

We isolated the phenolic glucoside salicortin from a Populus euramericana bark extract, and examined its ability to suppress inflammatory responses as well as the molecular mechanisms underlying these abilities, using lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Salicortin inhibited iNOS expression and the subsequent production of NO in a dose-dependent manner in the LPS-stimulated RAW 264.7 cells. Salicortin significantly suppressed LPS-induced signal cascades of NF-${\kappa}B$ activation, such as IKK activation, $I{\kappa}B{\alpha}$ phosphorylation and p65 phosphorylation in RAW 264.7 cells. In addition, salicortin inhibited the LPS-induced activation of JNK, but not ERK or p38 MAPK. Furthermore, salicortin significantly inhibited production of pro-inflammatory cytokines, such as TNF-${\alpha}$, IL-$1{\beta}$ and IL-6 in the LPS-stimulated RAW 264.7 cells. These findings suggest that salicortin may show its anti-inflammatory activity by suppressing the LPS-induced expression of pro-inflammatory mediators through inhibition of NF-${\kappa}B$ and JNK MAPK signaling cascades in macrophages.

Keywords

References

  1. Pierce, G. F. (1990) Macrophages: important physiologic and pathologic sources of polypeptide growth factors. Am. J. Respir. Cell Mol. Biol. 2, 233-234. https://doi.org/10.1165/ajrcmb/2.3.233
  2. Marks-Konczalik, J., Chu, S. C. and Moss, J. (1998) Cytokine-mediated transcriptional induction of the human inducible nitric oxide synthase gene requires both activator protein 1 and nuclear factor kappaB-binding sites. J. Biol. Chem. 273, 22201-22208. https://doi.org/10.1074/jbc.273.35.22201
  3. Yang, F., Tang, E., Guan, K. and Wang, C. Y. (2003) $IKK{\beta}plays$ an essential role in the phosphorylation of RelA/p65 on serine 536 induced by lipopolysaccharide. J. Immunol. 170, 5630-5635. https://doi.org/10.4049/jimmunol.170.11.5630
  4. Lee, J. A., Song, H. Y., Ju, S. M.,Lee, S. J., Kwon, H. J., Eum, W. S., Jang, S. H., Choi, S. Y. and Park, J. (2009) Differential regulation of inducible nitric oxide synthase and cyclooxygenase-2 expression by superoxide dismutase in lipopolysaccharide stimulated RAW 264.7 cells. Exp. Mol. Med. 41, 629-637. https://doi.org/10.3858/emm.2009.41.9.069
  5. Ben-Neriah, Y. and Karin, M. (2011) Inflammation meets cancer, with NF-${\kappa}B$ as the matchmaker. Nat. Immunol. 12, 715-723. https://doi.org/10.1038/ni.2060
  6. Donath, M. Y. and Shoelson, S. E. (2011) Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 11, 98-107. https://doi.org/10.1038/nri2925
  7. Guha, M. and Mackman, N. (2001) LPS induction of gene expression in human monocytes. Cell Signal. 13, 85-94. https://doi.org/10.1016/S0898-6568(00)00149-2
  8. Karin, M. and Delhase, M. (2000) The $I{\kappa}B$ kinase (IKK) and NF-${\kappa}B$: key elements of proinflammatory signaling. Semin. Immunol. 12, 85-98. https://doi.org/10.1006/smim.2000.0210
  9. Gloire, G., Legrand-Poels, S. and Piette, J. (2006) NF- kappaB activation by reactive oxygen species: fifteen years later. Biochem. Pharmacol. 72, 1493-1505. https://doi.org/10.1016/j.bcp.2006.04.011
  10. Kaminska, B. (2005) MAPK signalling pathways as molecular targets for anti-inflammatory therapy--from molecular mechanisms to therapeutic benefits. Biochim. Biophys. Acta 1754, 253-262. https://doi.org/10.1016/j.bbapap.2005.08.017
  11. Martineau, L. C., Muhammad, A., Saleem, A., Herve, J., Harris, C. S., Arnason, J. T. and Haddad, P. S. (2010) Anti-adipogenic activities of Alnus incana and Populus balsamifera bark extracts, part II: bioassay-guided identification of actives salicortin and oregonin. Planta Med. 76, 1519-1524. https://doi.org/10.1055/s-0029-1240991
  12. Yang, H., Lee, S. H., Sung, S. H., Kim, J. and Kim, Y. C. (2013) Neuroprotective compounds from Salix pseudo-lasiogyne twigs and their anti-amnesic effects on scopolamine-induced memory deficit in mice. Planta Med. 79, 78-82.
  13. Lee, H. J., Kim, J. S., Kim, Y. K. and Ryu, J. H. (2012) Phenolicglycosides as inhibitors of inducible nitric oxide synthase from Populus davidiana in LPS-activated RAW 264.7 murine macrophages. Pharmazie 67, 870-873.
  14. Knuth, S., Schubel, H., Hellemann, M. and Jurgenliemk, G. (2011) Catechol, a bioactive degradation product of salicortin, reduces TNF-${\alpha}$ induced ICAM-1 expression in human endothelial cells. Planta Med. 77, 1024-1026. https://doi.org/10.1055/s-0030-1270722
  15. Kim, S. Y., Jeong, H. J., Kim, D. W., Kim, M. J., An, J. J., Sohn, E. J., Kang, H. W., Shin, M. J., Ahn, E. H., Kwon, S. W., Kim, D. S., Cho, S. W., Park, J., Eum, W. S. and Choi, S. Y. (2011) Transduced PEP-1-FK506BP inhibits the inflammatory response in the Raw 264.7 cell and mouse models. Immunobiology 216, 771-781. https://doi.org/10.1016/j.imbio.2010.12.008
  16. Barnes, P. J. and Karin, M. (1997) Nuclearfactor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med. 336, 1066-1071. https://doi.org/10.1056/NEJM199704103361506
  17. Uto, T., Fujii, M. and Hou, D. X. (2005) 6-(Methylsulfinyl) hexyl isothiocyanate suppresses inducible nitric oxide synthase expression through the inhibition of Janus kinase 2-mediated JNK pathway in lipopolysaccharide-activated murine macrophages. Biochem. Pharmacol. 70, 1211-1221. https://doi.org/10.1016/j.bcp.2005.07.011
  18. Dommisse, R. A., Hoof, L. V. and Vlietinck, A. J. (1986) Structural analysis of phenolic glucosides from Salicaceae by NMR spectroscopy. Phytochemistry 25, 1201-1204. https://doi.org/10.1016/S0031-9422(00)81580-0
  19. Bae, D. S., Kim, Y. H., Pan, C. H., Nho, C. W., Samdan, J., Yansan, J. and Lee, J. K. (2012) Protopine reduces the inflammatory activity of lipopolysaccharide-stimulated murine macrophages. BMB Rep. 45, 108-113. https://doi.org/10.5483/BMBRep.2012.45.2.108
  20. Youn, G. S., Kwon, D. J., Ju, S. M., Choi, S. Y. and Park, J. (2013) Curcumin ameliorates TNF-${\alpha}$-induced ICAM-1 expression and subsequent THP-1 adhesiveness via the induction of heme oxygenase-1 in the HaCaT cells. BMB Rep. 46, 410-415. https://doi.org/10.5483/BMBRep.2013.46.8.014
  21. Park, M. C., Kim, D., Lee, Y. and Kwon, H. J. (2013) CD83 expression induced by CpG-DNA stimulation in a macrophage cell line RAW 264.7. BMB Rep. 46, 448-453. https://doi.org/10.5483/BMBRep.2013.46.9.023
  22. Shin, S. Y., Kim, C. G. and Lee, Y. H. (2013) Egr-1 regulates the transcription of the BRCA1 gene by etoposide. BMB Rep. 46, 92-96. https://doi.org/10.5483/BMBRep.2013.46.2.202

Cited by

  1. Butein, a tetrahydroxychalcone, suppresses pro-inflammatory responses in HaCaT keratinocytes vol.48, pp.9, 2015, https://doi.org/10.5483/BMBRep.2015.48.9.259
  2. Transduced PEP-1-PON1 proteins regulate microglial activation and dopaminergic neuronal death in a Parkinson's disease model vol.64, 2015, https://doi.org/10.1016/j.biomaterials.2015.06.015
  3. 2-Cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride alters lipopolysaccharide-induced proinflammatory cytokines and neuronal morphology in mouse fetal brain vol.102, 2016, https://doi.org/10.1016/j.neuropharm.2015.10.035
  4. High-Throughput Screening Platform for the Discovery of New Immunomodulator Molecules from Natural Product Extract Libraries vol.21, pp.6, 2016, https://doi.org/10.1177/1087057116635517
  5. Ginsenoside Rc from Panax ginseng exerts anti-inflammatory activity by targeting TANK-binding kinase 1/interferon regulatory factor-3 and p38/ATF-2 vol.41, pp.2, 2017, https://doi.org/10.1016/j.jgr.2016.02.001
  6. Anti-inflammatory and antioxidant activity of the traditional herbal formula Gwakhyangjeonggi-san via enhancement of heme oxygenase-1 expression in RAW264.7 macrophages vol.13, pp.5, 2016, https://doi.org/10.3892/mmr.2016.5084
  7. Low level laser (LLL) attenuate LPS-induced inflammatory responses in mesenchymal stem cells via the suppression of NF-κB signaling pathway in vitro vol.12, pp.6, 2017, https://doi.org/10.1371/journal.pone.0179175
  8. Anti-inflammatory Activities ofGouania leptostachyaMethanol Extract and its Constituent Resveratrol vol.29, pp.3, 2015, https://doi.org/10.1002/ptr.5262
  9. Anti-inflammatory action of ethanolic extract of Ramulus mori on the BLT2-linked cascade vol.49, pp.4, 2016, https://doi.org/10.5483/BMBRep.2016.49.4.002
  10. Baicalin Alleviates Lipopolysaccharide-Induced Liver Inflammation in Chicken by Suppressing TLR4-Mediated NF-κB Pathway vol.8, 2017, https://doi.org/10.3389/fphar.2017.00547
  11. KH-type splicing regulatory protein mediate inflammatory response in gastric epithelial cells induced by lipopolysaccharide vol.41, pp.8, 2017, https://doi.org/10.1002/cbin.10804
  12. The Phenolic Fraction of Mentha haplocalyx and Its Constituent Linarin Ameliorate Inflammatory Response through Inactivation of NF-κB and MAPKs in Lipopolysaccharide-Induced RAW264.7 Cells vol.22, pp.5, 2017, https://doi.org/10.3390/molecules22050811
  13. The azetidine derivative, KHG26792 protects against ATP-induced activation of NFAT and MAPK pathways through P2X7 receptor in microglia vol.51, 2015, https://doi.org/10.1016/j.neuro.2015.10.013
  14. The Anti-Inflammatory Effects and Mechanisms of Eupafolin in Lipopolysaccharide-Induced Inflammatory Responses in RAW264.7 Macrophages vol.11, pp.7, 2016, https://doi.org/10.1371/journal.pone.0158662
  15. 2,3-Dimethoxy-2′-hydroxychalcone ameliorates TNF-α-induced ICAM-1 expression and subsequent monocyte adhesiveness via NF-kappaB inhibition and HO-1 induction in HaCaT cells vol.49, pp.1, 2016, https://doi.org/10.5483/BMBRep.2016.49.1.141
  16. Antioxidative effects of ethyl 2-(3-(benzo[d]thiazol-2-yl)ureido)acetate against amyloid β-induced oxidative cell death via NF-κB, GSK-3β and β-catenin signaling pathways in cultured cortical neurons vol.49, pp.4, 2015, https://doi.org/10.3109/10715762.2015.1007048
  17. Oleanolic acid regulates NF-κB signaling by suppressing MafK expression in RAW 264.7 cells vol.47, pp.9, 2014, https://doi.org/10.5483/BMBRep.2014.47.9.149
  18. Corydalis bungeana Turcz. attenuates LPS-induced inflammatory responses via the suppression of NF-κB signaling pathway in vitro and in vivo vol.194, 2016, https://doi.org/10.1016/j.jep.2016.09.013
  19. Celastrol ameliorates cytokine toxicity and pro-inflammatory immune responses by suppressing NF-κB activation in RINm5F beta cells vol.48, pp.3, 2015, https://doi.org/10.5483/BMBRep.2015.48.3.147
  20. Effects of low doses of Tat-PIM2 protein against hippocampal neuronal cell survival vol.358, pp.1-2, 2015, https://doi.org/10.1016/j.jns.2015.08.1549
  21. Protection Effect of Punicalagin Isolated from Pomegranate on Inflammation and Ethanol-induced Gastric Mucosal Injury vol.37, pp.11, 2016, https://doi.org/10.1002/bkcs.10973
  22. The Attenuation of 14-3-3ζ is Involved in the Caffeic Acid-Blocked Lipopolysaccharide-Stimulated Inflammatory Response in RAW264.7 Macrophages vol.40, pp.5, 2017, https://doi.org/10.1007/s10753-017-0618-1
  23. Oral administration of fermented wild ginseng ameliorates DSS-induced acute colitis by inhibiting NF-κB signaling and protects intestinal epithelial barrier vol.48, pp.7, 2015, https://doi.org/10.5483/BMBRep.2015.48.7.039
  24. N-Adamantyl-4-methylthiazol-2-amine suppresses amyloid β-induced neuronal oxidative damage in cortical neurons vol.50, pp.6, 2016, https://doi.org/10.3109/10715762.2016.1167277
  25. Tat-ATOX1 inhibits streptozotocin-induced cell death in pancreatic RINm5F cells and attenuates diabetes in a mouse model vol.38, pp.1, 2016, https://doi.org/10.3892/ijmm.2016.2599
  26. 1-(2,3-Dibenzimidazol-2-ylpropyl)-2-methoxybenzene Is a Syk Inhibitor with Anti-Inflammatory Properties vol.21, pp.4, 2016, https://doi.org/10.3390/molecules21040508
  27. extract inhibits neuronal loss and alleviates gliosis in the gerbil hippocampal CA1 area induced by transient global cerebral ischemia vol.50, pp.4, 2017, https://doi.org/10.5115/acb.2017.50.4.284
  28. : Implications for gene discovery vol.8, pp.7, 2018, https://doi.org/10.1002/ece3.3932